Interpreting controlled quantum systems as qubits connects problems of quantum coherence and entanglement to a set of fundamental questions connecting quantum mechanics and information science.
Research at QDev
The Center for Quantum Devices (QDev, for short) studies how to create, control, measure, and protect quantum coherence and entanglement in solid-state electronic devices.
The miniaturization and scaling of modern electronics, yielding billions of transistors on a chip, has a quantum analog in which quantum states of transistors are made to interact, and hence become entangled, with the specificity of a computer algorithm.
The general power of such a device to communicate, compute, measure, and simulate physical and chemical systems is unknown. From known examples where entanglement serves as a resource, one can expect rich and surprising phenomena to emerge from such a device, reflecting the large space of quantum states compared to the number of classical states.
Once entanglement is brought under control and becomes a resource, the technological harvest has the potential to revolutionize communication, information processing, and simulation of quantum mechanical systems from novel superconducting materials to biomolecules.