Publications by Jesper Nygård

  • 2016
    • InAs Nanowire with Epitaxial Aluminum as a Single-Electron Transistor with Fixed Tunnel Barriers - Abstract
      • We report on fabrication of single-electron transistors using InAs nanowires with epitaxial aluminium with fixed tunnel barriers made of aluminium oxide. The devices exhibit a hard superconducting gap induced by the proximized aluminium cover shell and they behave as metallic single-electron transistors. In contrast to the typical few channel contacts in semiconducting devices, our approach forms opaque multichannel contacts to a semiconducting wire and thus provides a complementary way to study them. In addition, we confirm that unwanted extra quantum dots can appear at the surface of the nanowire. Their presence is prevented in our devices, and also by inserting a protective layer of GaAs between the InAs and Al, the latter being suitable for standard measurement methods.
    • M. Taupin, E. Mannila, P. Krogstrup, V. F. Maisi, H. Nguyen, S. M. Albrecht, J. Nygard, C. M. Marcus, J. P. Pekola
      Journal reference: Phys. Rev. Applied 6, 054017 (2016) [pdf]
      DOI: 10.1103/PhysRevApplied.6.054017

  • 2015
    • Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation - Abstract
      • The thermal gradient along indium-arsenide nanowires was engineered by a combination of fabricated micro- trenches in the supporting substrate and focused laser irradiation. This allowed local control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.
    • R. Tanta, M. H. Madsen, Z. Liao, P. Krogstrup, T. Vosch, J. Nygard, T. S. Jespersen
      Journal reference: Appl. Phys. Lett. 107, 243101 (2015) [pdf]
      DOI: 10.1063/1.4937442

    • Semiconductor-Nanowire-Based Superconducting Qubit - Abstract
      • We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
    • T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 115, 127001 (2015) [pdf]
      DOI: 10.1103/PhysRevLett.115.127001

    • Parity lifetime of bound states in a proximitized semiconductor nanowire - Abstract
      • Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
    • A. P. Higginbotham, S. M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygard, K. Flensberg, C. M. Marcus
      Journal reference: Nature Physics 11, 1017 (2015) [pdf]
      DOI: 10.1038/nphys3461

  • 2013
    • Single-nanowire solar cells beyond the Shockley–Queisser limit - Abstract
      • Light management is of great importance to photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal pn-junction combined with an optimal light absorption can lead to a solar cell efficiency above the Shockley-Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate. At one sun illumination a short circuit current of 180 mA/cm^2 is obtained, which is more than one order of magnitude higher than what would be predicted from Lambert-Beer law. The enhanced light absorption is shown to be due to a light concentrating property of the standing nanowire as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III-V based nanowire solar cells under one sun illumination.
    • Peter Krogstrup, Henrik Ingerslev Jørgensen, Martin Heiss, Olivier Demichel, Jeppe V. Holm, Martin Aagesen, Jesper Nygard, Anna Fontcuberta i Morral
      Journal reference: Nature Photonics 7, 306-310 (2013) [pdf]
      DOI: 10.1038/nphoton.2013.32

    • Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction - Abstract
      • The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupancy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
    • W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 110, 217005 (2013) [pdf]
      DOI: 10.1103/PhysRevLett.110.217005