Publications by Morten Kjaergaard

  • 2024
    • Gatemon Qubit Revisited for Improved Reliability and Stability - Abstract
      • The development of quantum circuits based on hybrid superconductor-semiconductor Josephson junctions holds promise for exploring their mesoscopic physics and for building novel superconducting devices. The gate-tunable superconducting transmon qubit (gatemon) is the paradigmatic example of such a superconducting circuit. However, gatemons typically suffer from unstable and hysteretic qubit frequencies with respect to the applied gate voltage and reduced coherence times. Here we develop methods for characterizing these challenges in gatemons and deploy these methods to compare the impact of shunt capacitor designs on gatemon performance. Our results indicate a strong frequency- and design-dependent behavior of the qubit stability, hysteresis, and dephasing times. Moreover, we achieve highly reliable tuning of the qubit frequency with 1 MHz precision over a range of several GHz, along with improved stability in grounded gatemons compared to gatemons with a floating capacitor design.
    • 2412.11611v1 [pdf]
      David Feldstein-Bofill, Zhenhai Sun, Casper Wied, Shikhar Singh, Brian D. Isakov, Svend Krøjer, Jacob Hastrup, András Gyenis, Morten Kjaergaard
      [pdf]

  • 2023
    • Fast universal control of a flux qubit via exponentially tunable wave-function overlap - Abstract
      • Fast, high fidelity control and readout of protected superconducting qubits are fundamentally challenging due to their inherent insensitivity. We propose a flux qubit variation which enjoys a tunable level of protection against relaxation to resolve this outstanding issue. Our qubit design, the double-shunted flux qubit (DSFQ), realizes a generic double-well potential through its three junction ring geometry. One of the junctions is tunable, making it possible to control the barrier height and thus the level of protection. We analyze single- and two-qubit gate operations that rely on lowering the barrier. We show that this is a viable method that results in high fidelity gates as the non-computational states are not occupied during operations. Further, we show how the effective coupling to a readout resonator can be controlled by adjusting the externally applied flux while the DSFQ is protected from decaying into the readout resonator. Finally, we also study a double-loop gradiometric version of the DSFQ which is exponentially insensitive to variations in the global magnetic field, even when the loop areas are non-identical.
    • 2303.01102v2 [pdf]
      Svend Krøjer, Anders Enevold Dahl, Kasper Sangild Christensen, Morten Kjaergaard, Karsten Flensberg
      [pdf]

  • 2022
    • Entangling Transmons with Low-Frequency Protected Superconducting Qubits - Abstract
      • Novel qubits with intrinsic noise protection constitute a promising route for improving the coherence of quantum information in superconducting circuits. However, many protected superconducting qubits exhibit relatively low transition frequencies, which could make their integration with conventional transmon circuits challenging. In this work, we propose and study a scheme for entangling a tunable transmon with a Cooper-pair parity-protected qubit, a paradigmatic example of a low-frequency protected qubit that stores quantum information in opposite Cooper-pair parity states on a superconducting island. By tuning the external flux on the transmon, we show that non-computational states can mediate a two-qubit entangling gate that preserves the Cooper-pair parity independent of the detailed pulse sequence. Interestingly, the entangling gate bears similarities to a controlled-phase gate in conventional transmon devices. Hence, our results suggest that standard high-precision gate calibration protocols could be repurposed for operating hybrid qubit devices.
    • Andrea Maiani, Morten Kjaergaard, Constantin Schrade
      Journal reference: PRX Quantum 3, 030329 (2022) [pdf]
      DOI: 10.1103/PRXQuantum.3.030329

    • Gate-Tunable Transmon Using Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon - Abstract
      • We present a gate-voltage tunable transmon qubit (gatemon) based on planar InAs nanowires that are selectively grown on a high resistivity silicon substrate using III-V buffer layers. We show that low loss superconducting resonators with an internal quality of $2\times 10^5$ can readily be realized using these substrates after the removal of buffer layers. We demonstrate coherent control and readout of a gatemon device with a relaxation time, $T_{1}\approx 700\,\mathrm{ns}$, and dephasing times, $T_2^{\ast}\approx 20\,\mathrm{ns}$ and $T_{\mathrm{2,echo}} \approx 1.3\,\mathrm{\mu s}$. Further, we infer a high junction transparency of $0.4 - 0.9$ from an analysis of the qubit anharmonicity.
    • A. Hertel, M. Eichinger, L. O. Andersen, D. M. T. van Zanten, S. Kallatt, P. Scarlino, A. Kringhøj, J. M. Chavez-Garcia, G. C. Gardner, S. Gronin, M. J. Manfra, A. Gyenis, M. Kjaergaard, C. M. Marcus, K. D. Petersson
      Journal reference: Phys. Rev. Applied 18, 034042 (2022) [pdf]
      DOI: 10.1103/PhysRevApplied.18.034042

  • 2018
    • Superconducting gatemon qubit based on a proximitized two-dimensional electron gas - Abstract
      • The coherent tunnelling of Cooper pairs across Josephson junctions (JJs) generates a nonlinear inductance that is used extensively in quantum information processors based on superconducting circuits, from setting qubit transition frequencies and interqubit coupling strengths, to the gain of parametric amplifiers for quantum-limited readout. The inductance is either set by tailoring the metal-oxide dimensions of single JJs, or magnetically tuned by parallelizing multiple JJs in superconducting quantum interference devices (SQUIDs) with local current-biased flux lines. JJs based on superconductor-semiconductor hybrids represent a tantalizing all-electric alternative. The gatemon is a recently developed transmon variant which employs locally gated nanowire (NW) superconductor-semiconductor JJs for qubit control. Here, we go beyond proof-of-concept and demonstrate that semiconducting channels etched from a wafer-scale two-dimensional electron gas (2DEG) are a suitable platform for building a scalable gatemon-based quantum computer. We show 2DEG gatemons meet the requirements by performing voltage-controlled single qubit rotations and two-qubit swap operations. We measure qubit coherence times up to ~2 us, limited by dielectric loss in the 2DEG host substrate.
    • Lucas Casparis, Malcolm R. Connolly, Morten Kjaergaard, Natalie J. Pearson, Anders Kringhøj, Thorvald W. Larsen, Ferdinand Kuemmeth, Tiantian Wang, Candice Thomas, Sergei Gronin, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, Karl D. Petersson
      Journal reference: Nature Nanotechnology 13, 915 (2018) [pdf]
      DOI: 10.1038/s41565-018-0207-y

  • 2017
    • Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform - Abstract
      • We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to $3$~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.
    • Henri J. Suominen, Morten Kjaergaard, Alexander R. Hamilton, Javad Shabani, Chris J. Palmstrøm, Charles M. Marcus, Fabrizio Nichele
      Journal reference: Phys. Rev. Lett. 119, 176805 (2017) [pdf]
      DOI: 10.1103/PhysRevLett.119.176805

    • Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum - Abstract
      • We demonstrate the transfer of the superconducting properties of NbTi---a large-gap high-critical-field superconductor---into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflection reveal near-unity transparency, with an induced gap $\Delta^*=0.50~\mathrm{meV}$ and a critical temperature of $7.8~\mathrm{K}$. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of $\Delta^*=0.43~\mathrm{meV}$ with substructure characteristic of both Al and NbTi.
    • A. C. C. Drachmann, H. J. Suominen, M. Kjaergaard, B. Shojaei, C. J. Palmstrøm, C. M. Marcus, F. Nichele
      Journal reference: Nano Lett. 17, 1200 (2017) [pdf]
      DOI: 10.1021/acs.nanolett.6b04964

    • Giant Spin-Orbit Splitting in Inverted - Abstract
      • Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electron-like and hole-like states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in $e^2/h$ steps and a non-trivial Berry phase.
    • Fabrizio Nichele, Morten Kjaergaard, Henri J. Suominen, Rafal Skolasinski, Michael Wimmer, Binh-Minh Nguyen, Andrey A. Kiselev, Wei Yi, Marko Sokolich, Michael J. Manfra, Fanming Qu, Arjan J. A. Beukman, Leo P. Kouwenhoven, Charles M. Marcus
      Journal reference: Phys. Rev. Lett. 118, 016801 (2017) [pdf]
      DOI: 10.1103/PhysRevLett.118.016801

    • Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions - Abstract
      • We investigate patterns of critical current as a function of perpendicular and in-plane magnetic fields in superconductor-semiconductor-superconductor (SNS) junctions based on InAs/InGaAs heterostructures with an epitaxial Al layer. This material system is of interest due to its exceptionally good superconductor-semiconductor coupling, as well as large spin-orbit interaction and g-factor in the semiconductor. Thin epitaxial Al allows the application of large in-plane field without destroying superconductivity. For fields perpendicular to the junction, flux focusing results in aperiodic node spacings in the pattern of critical currents known as Fraunhofer patterns by analogy to the related interference effect in optics. Adding an in-plane field yields two further anomalies in the pattern. First, higher order nodes are systematically strengthened, indicating current flow along the edges of the device, as a result of confinement of Andreev states driven by an induced flux dipole; second, asymmetries in the interference appear that depend on the field direction and magnitude. A model is presented, showing good agreement with experiment, elucidating the roles of flux focusing, Zeeman and spin-orbit coupling, and disorder in producing these effects.
    • H. J. Suominen, J. Danon, M. Kjaergaard, K. Flensberg, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
      Journal reference: Phys. Rev. B 95, 035307 (2017) [pdf]
      DOI: 10.1103/PhysRevB.95.035307

    • Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction - Abstract
      • Measurement of multiple Andreev reflection (MAR) in a Josephson junction made from an InAs heterostructure with epitaxial aluminum is used to quantify the highly transparent semiconductor-superconductor interface, indicating near-unity transmission. The observed temperature dependence of MAR does not follow a conventional BCS form, but instead agrees with a model in which the density of states in the quantum well acquires an effective induced gap, in our case 180 {\mu}eV, close to that of the epitaxial superconductor. Carrier density dependence of MAR is investigated using a depletion gate, revealing the subband structure of the semiconductor quantum well, consistent with magnetotransport experiment of the bare InAs performed on the same wafer.
    • M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R. Akhmerov, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
      Journal reference: Phys. Rev. Applied 7, 034029 (2017) [pdf]
      DOI: 10.1103/PhysRevApplied.7.034029

  • 2016
    • Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure - Abstract
      • The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.
    • M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak, M. Wimmer, A. R. Akhmerov, J. A. Folk, K. Flensberg, J. Shabani, C. J. Palmstrom, C. M. Marcus
      Journal reference: Nat. Commun. 7, 12841 (2016) [pdf]
      DOI: 10.1038/ncomms12841

    • Edge transport in the trivial phase of InAs/GaSb - Abstract
      • We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from the trivial to the topological regime. In the trivial regime, bulk conductivity is quenched but transport persists along the edges, superficially resembling the predicted helical edge-channels in the topological regime. We characterize edge conduction in the trivial regime in a wide variety of sample geometries and measurement configurations, as a function of temperature, magnetic field, and edge length. Despite similarities to studies claiming measurements of helical edge channels, our characterization points to a non-topological origin for these observations.
    • Fabrizio Nichele, Henri J. Suominen, Morten Kjaergaard, Charles M. Marcus, Ebrahim Sajadi, Joshua A. Folk, Fanming Qu, Arjan J. A. Beukman, Folkert K. de Vries, Jasper van Veen, Stevan Nadj-Perge, Leo P. Kouwenhoven, Binh-Minh Nguyen, Andrey A. Kiselev, Wei Yi, Marko Sokolich, Michael J. Manfra, Eric M. Spanton, Kathryn A. Moler
      Journal reference: New J. Phys. 18, 083005 (2016) [pdf]
      DOI: 10.1088/1367-2630/18/8/083005

    • Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions - Abstract
      • We present an analysis of the symmetries of the interference pattern of critical currents through a two-dimensional superconductor-semiconductor-superconductor junction, taking into account Rashba and Dresselhaus spin-orbit interaction, an arbitrarily oriented magnetic field, disorder, and structural asymmetries. We relate the symmetries of the pattern to the absence or presence of symmetries in the Hamiltonian, which provides a qualitative connection between easily measurable quantities and the spin-orbit coupling and other symmetries of the junction. We support our analysis with numerical calculations of the Josephson current based on a perturbative expansion up to eighth order in tunnel coupling between the normal region and the superconductors.
    • Asbjørn Rasmussen, Jeroen Danon, Henri Suominen, Fabrizio Nichele, Morten Kjaergaard, Karsten Flensberg
      Journal reference: Phys. Rev. B 93, 155406 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.155406

    • Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks - Abstract
      • Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance.
    • J. Shabani, M. Kjaergaard, H. J. Suominen, Younghyun Kim, F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans'l, S. Kraemer, C. Nayak, M. Troyer, C. M. Marcus, C. J. Palmstrøm
      Journal reference: Phys. Rev. B 93, 155402 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.155402