Solitons and topological superconductivity in antiferromagnet-superconductor interfaces

Jose Lado

Department of Applied Physics, Aalto University, Finland

Niels Bohr Institute, Denmark, Condensed Matter Seminar Series, February 5th 2021

Complexity, universality and emergence

Complex compounds

Phys. Rev. Lett. 120, 198101 (2018)

Complex systems allow to have new phenomena that did not exist before 2

A new universe in each new material

Each material is a new universe for electrons, with laws changing from compound to compound

Topological superconductors and topological quantum computing

Topological superconductors with broken time reversal symmetry

Gapped bulk excitations

Gapless surface modes, single Majorana mode per edge

A. Y. Kitaev. Physics-Uspekhi, 44:131, 2001

Anyonic statistics, suitable for quantum computing

Nature Physics 7, 412-417 (2011)

Platforms for Majorana physics

Ferromagnetic atomic chains

Science 346.6209 (2014): 602-607

Heavy-fermion compounds

Nature 579, 523–527 (2020)

Semiconductors

Science 354.6319 (2016): 1557-1562

Topological insulators

Science 364.6447 (2019): 1255-1259

Fe-based superconductors

Science 362.6412 (2018): 333-335

Two-dimensional materials

Nature 588, 424–428 (2020)

New materials open new venues for engineering and controlling Majorana physics 5

Topological superconductivity with antiferromagnetic insulators

Build a topological superconductor with

- A conventional (s-wave) superconductor
- An antiferromagnetic insulator

The prize

Bringing a new solid state platform to realize artificial topological superconductors

How to build your own topological superconductor

The initial problem

How can we get a topological phase starting from a trivial insulator?

We need to create a "spinless" gapless state out of an insulator

Behind the scenes

Manfred Sigrist

Senna Luntama

Päivi Törmä

Phys. Rev. Lett. 121, 037002 (2018) Phys. Rev. Research 2, 023347 (2020)

arXiv:2011.06990 (2020)

Today's story

Sal	Doism
	Sort
	25

Topological superconductivity (TS) in 3D AF insulators

No interactions

Phys. Rev. Lett. 121, 037002 (2018)

Interaction-induced TS in 2D AF insulators

Mean-field interactions

arXiv:2011.06990 (2020)

The quantum many-body 1D limit

Purely quantum many-body

Phys. Rev. Research 2, 023347 (2020)

Creating a 2D topological superconductor with a 3D antiferromagnetic insulator

Heterostructure for 2D TS in a 3D AF insulator

2d topological superconductor at the interface

$\mathcal{H} = \mathcal{H}_{\rm kin} + \mathcal{H}_{\rm AF} + \mathcal{H}_{\rm SC} + \mathcal{H}_{\rm SOC}$

Kinetic Antiferromagnetism Spin-orbit coupling energy Superconductivity

Solitonic modes between Dirac AF and SC

Total Hamiltonia, for an antiferromagnet with gaped Dirac points

$$\mathcal{H} = \mathcal{H}_{\mathrm{kin}} + \mathcal{H}_{\mathrm{AF}} + \mathcal{H}_{\mathrm{SC}}$$

There will be two zero solutions $~~{\cal H}|\Psi_{lpha}
angle=0~~$

Phys. Rev. X 5, 041042 (2015)

similar to a Jackiw-Rebbi soliton Phys. Rev. D 13, 3398 (1976)

Sector #1 Up electron, down hole

Sector #2 Down electron, up hole

Emergence of interfacial modes, no spin-orbit coupling

AF/SC heterostructure

Topological superconductivity with spin-orbit coupling

Edge spectral function

Topological superconductivity showing gapless Majorana modes

Adding spin-orbit coupling

Edge spectral function

The interface realizes a topological superconductor

3D AF material candidates, spinels

Antiferromagnet forming a diamond lattice

Antiferromagnetic spinels

Co atoms form a diamond lattice

3D AF material candidates, Dirac materials

Dirac lines in the absence of spin-orbit coupling and magnetism

Phys. Rev. Lett. 115, 036806 (2015)

Antiferromagnets whose paramagnetic state hosts Dirac lines

Interaction-induced 1D topological superconductivity in 2D antiferromagnets

Topological superconductivity driven by interactions

Antiferromagnet

Superconductor

We will focus on a heterostructure between a 2D superconductor and a 2D superconductor

$$\mathcal{H} = \mathcal{H}_{\rm kin} + \mathcal{H}_{\rm AF} + \mathcal{H}_{\rm SC} + \mathcal{H}_{\rm int}$$

Kinetic energy Antiferromagnetism

Repulsive interactions

Superconductivity

Can we get topological superconductivity just driven by repulsive electronic interactions?

Interface AF-SC modes

Gapless zero modes appear at the one-dimensional AF-SC interface

Interactions in the model

What happens when we now include interactions in whole system?

Could there be an interaction-induced gap opening of the interface modes?

$$\mathcal{H} = \mathcal{H}_{\mathrm{kin}} + \mathcal{H}_{\mathrm{AF}} + \mathcal{H}_{\mathrm{SC}} + \mathcal{H}_{\mathrm{int}}$$

We will solve a model with repulsive long-range interactions at the mean-field level

Impact of interactions

Without interactions

With interactions

Including repulsive interactions opens up a topological gap in the solitonic modes

Interaction-induced gap VS interaction strength

Dependence of the topological gap with respect to first and second neighbor interactions

Topological superconductivity without a critical interaction

Topological gap VS interaction strength

A topological gap opens up for arbitrarily small interactions

Majorana zero modes

Spectral function at zero energy, featuring Majorana edge modes

Majorana zero modes emerge at the edge due to electronic interactions

AF material candidates

Antiferromagnetic honeycomb oxides

InCu_{2/3}V_{1/3}O₃ *Phys. Rev. B* 78, 024420 (2008) β-Cu2V₂O₇ *Phys. Rev. B* 82, 144416 (2010)

2D van der Waals materials (strained)

Phys. Rev. B 98, 144411 (2018)

Many-body excitations in quantum antiferromagnetsuperconductor junctions

Diving into the quantum many-body regime

Stagger antiferromagnet (mean-field solution)

$$\mathcal{H} = \mathcal{H}_{\rm kin} + \mathcal{H}_{\rm AF} \qquad |GS\rangle = |\uparrow\downarrow\rangle$$

Quantum antiferromagnet (many-body solution)

F

$$\mathcal{H} = \mathcal{H}_{\mathrm{kin}} + \mathcal{H}_{\mathrm{U}} |GS\rangle = |\downarrow\downarrow\rangle - |\downarrow\downarrow\rangle$$

Hubbard interaction $\mathcal{H}_{\mathrm{U}} = \sum_{n} Uc_{n,\uparrow}^{\dagger}c_{n,\downarrow}c_{n,\downarrow}$

What happens at interfaces between a quantum many-body 1D antiferromagnet and a superconductor?

Superconductor-quantum antiferromagnet junction

We will solve the interacting model exactly using the tensor network formalism

The ground state does not break time-reversal symmetry

Many-body spectral function

DOS in the superconductor

Both systems show an electronic gap when decoupled

 $A(\omega, n)$

In-gap modes at the SC-quantum AF interface

Superconductor-quantum antiferromagnet junction

Solitonic in-gap modes appear between the superconductor and the quantum antiferromagnet

Back to single-particle solitonic zero modes

How are these modes connected to the many-body in-gap mode from before? 33

From many-body to the singleparticle symmetry broken state

$$\mathcal{H} = \mathcal{H}_{\mathrm{kin}} + \mathcal{H}_{\mathrm{SC}} + \mathcal{H}_{\mathrm{AF}} + \mathcal{H}_{\mathrm{int}}$$

Bulk AF states -0.20.2 10**Bulk SC states** З n $\mathbf{0}$ -10 $m_{AF} < 0$ $m_{AF} > 0$ -0.050.05 m_{AF} [t] m_{AF}

Sketch of the charge excitations

Switching on a magnetization pushes the interacting model to the symmetry broken state $_{34}$

From many-body to symmetry broken

Interface

Antiferromagnet

The solitonic single-particle mode transforms into the many-body in-gap mode 35

Experimental realization with atomically engineered lattices

Science 335.6065 (2012): 196-199 Nature Physics 12, 656–660 (2016) Rev. Mod. Phys. 91, 041001 (2019)

Computing electronic properties

A user interface to compute electronic properties

Quantum Honeycomp	p: system selection		2D systems	- • 📀	Figure 1 _ 0	× Bandstructure _ □ ×
Contraction of the system you want to compute	neycomp	Terms in the Hamiltonian Fermi energy -1.2 Magnetic field 0.0 Zeeman Jx 0.0 Zeeman Jz 0.5 Rashba 0.5 Kane-Mele 0.0	Structure Bands DOS BANDS	DOS LDOS ()	$ \begin{array}{c} \text{Surface} & \text{Bulk} \\ 0.5 & 5 & 5 & 5 & 5 & 5 \\ 0.0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\ 0.0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & $	$\begin{array}{c} \mathbf{a} \leftarrow \mathbf{b} \mathbf{b} \mathbf{c} \\ 2.5 \\ 0.0 \\ -2.5 \\ \mathbf{c} \mathbf{k} \mathbf{\dot{M}} \mathbf{\dot{k}'} \mathbf{c} \end{array}$
1310103	nuge Islanda	Haldane 0.0				
Ribbons	Hybrid ribbons	Anti-Haldane 0.0 Sublattice imbalance 0.0	Tune of lattice Kageme		ngure 1 _ 0	* + + Q \= 🖄
Sheets	Multilayer graphene	Antiferromagnetism 0.0 swave pairing 0.0	Supercell 1		75 atoms	υ
Films	Hybrid films					- 002 garn
Hofstadter butterflies	3D crystals			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		J 100- ≥
Twisted multilayer graphene	Single impurities	Stender		A CONTRACTOR	XXXX	
Update Quantum Version 0.19.1	n Honeycomp			40		

Quantum Honeycomp: open source interactive interface for tight binding modeling

https://github.com/joselado/quantum-honeycomp

Take home

Antiferromagnet-superconductor junctions provide a powerful platform to engineer solitons, unconventional superconductors and robust many-body excitations.

Phys. Rev. Lett. 121, 037002 (2018)

arXiv:2011.06990 (2020)

Phys. Rev. Research 2, 023347 (2020)

Thank you!