
F A C U L T Y O F S C I E N C E

UNI VE R S I T Y OF COP E N HA G E N

Master’s Thesis
Christian Birch Okkels

Financial Forecasting
Stock Market Prediction

Supervisor: Bjarne Andresen

Submitted: 01/06/2014

Abstract

This thesis considers financial forecasting, and more specifically the problem of stock market
prediction. Beginning with an introduction to financial markets, and their data and analysis,
we proceed by discussing the fundamental question of their predictability, including the Efficient
Market Hypothesis. The question is further elucidated through a conceptual and methodological
comparison to forecasting in physics, e.g. weather forecasting, etc. Inspired by oscillatory systems
in physics, we also build a model for the fluctuation of stock prices.

The main financial asset under consideration is the popular NASDAQ Index. Analysing
the distribution of returns, we find that the daily returns are not normally distributed—as is
often assumed—and that a better model accounting for the heavier tails is provided by the
t distribution. In a time series analysis, we find empirical evidence for autocorrelation and
conditional heteroscedasticity (volatility clustering). This makes it plausible to apply ARMA-
GARCH models; we construct, select, and diagnose such models and use them for both multi-step
and one-step ahead prediction.

Used even more extensively are the three machine learning models, Artificial Neural Networks,
Support Vector Machines, and Random Forests. In several model-specific analyses we explore the
effects of varying parameters, showing among other things the crucial problem of overfitting. We
reduce this phenomenon via cross-validation. In numerous experiments we then investigate the
effect of varying certain aspects of the data: e.g. the amount of lags, exogenous inputs (mostly
technical indicators), training observations, and the frequency (daily, weekly, monthly), etc.
Prediction performance is assessed quantitatively via the MSE, MAPE, and Hit Rate measures,
and qualitatively using plots.

Our results show excellent performances, with one-day ahead predictions very close to the
actual prices. In the best cases, the models correctly predict the price direction (up/down) almost
80% of the time. For comparison, we have implemented two benchmarks: the Random Walk
model (“tomorrow’s price equals today’s”), and the Random Guess model (”50/50”). Our models
significantly outperform the latter in all regards and the former in terms of MSE and MAPE. In
terms of Hit Rate, however, the Random Walk model comes quite close. This somewhat reduces
the impressiveness of the results, and helps to highlight a crucial feature in the predictions:
that successful predictions are often due to the price moving in a particular direction, and that
failures mainly occur when the price suddenly makes a larger move in the opposite direction.
Thus, although the models exhibit some degree of success, they seem to have great difficulty
predicting sudden day-to-day corrections. This result—the difficulty in, or even impossibility
of, prediction—may be ascribed to suboptimal predictors and models, or to the fact that the
financial markets may actually be unpredictable.

Contents

1 Introduction 4
1.1 Structure of the Thesis . 4
1.2 Purposes of the Thesis . 5
1.3 Historical Overview of the Literature . 6

2 Financial Markets and Data 10
2.1 Predictability of the Markets . 10

2.1.1 The Efficient Market Hypothesis . 10
2.1.2 Human Psychology vs. “Computer” Psychology 12
2.1.3 Overview of Methods . 12

2.2 Financial Data . 13
2.2.1 Data Acquisition . 13
2.2.2 Raw Data . 14
2.2.3 Derived Data and Data Preprocessing . 15
2.2.4 Technical and Fundamental Data . 17
2.2.5 Data Transformations . 18

2.3 Technical and Fundamental Analysis . 19

3 Forecasting in Physics 21
3.1 Weather Forecasting . 21

3.1.1 Crucial Differences . 24
3.2 Forecasting in Other Areas of Physics . 25
3.3 PDEs in Physics and Finance . 30
3.4 Oscillator Model for Financial Forecasting . 30

3.4.1 Extending the Model to Nonlinear Form 32

4 Traditional Time Series Analysis 35
4.1 Characteristics of Time Series . 35

4.1.1 Stationarity . 35
4.1.2 Correlation and Autocorrelation . 36
4.1.3 White Noise . 39

4.2 Autoregressive (AR) Models . 39
4.2.1 Order Determination for AR Models . 40

4.3 Moving Average (MA) Models . 42
4.4 ARMA Models . 44

4.4.1 Order Determination for ARMA models 45
4.4.2 Forecasting with ARMA Models . 45
4.4.3 Three Representations for ARMA Models 46

1

Contents Contents

4.5 ARIMA Models . 48
4.6 ARMAX Models . 48
4.7 Conditional Heteroscedastic Models . 49

4.7.1 ARCH Models . 50
4.7.2 GARCH Models . 50
4.7.3 IGARCH Models . 51
4.7.4 EGARCH Models . 52
4.7.5 Conditional Heteroscedasticity Tests . 52

5 Machine Learning Methods 54
5.1 Introduction . 54
5.2 Artificial Neural Networks . 55

5.2.1 Feedforward Networks . 55
5.2.2 Network Training and Learning Algorithms 56
5.2.3 Recurrent Networks . 59
5.2.4 Strengths, Weaknesses and Problems . 61

5.3 Support Vector Machines . 62
5.3.1 SVM Classification . 63
5.3.2 SVM Regression . 67
5.3.3 Strengths, Weaknesses, and Problems with SVMs 69

5.4 Random Forests . 70
5.4.1 Classification and Regression Trees . 70
5.4.2 Random Forests . 74

5.5 Application to Financial Forecasting . 76

6 Analysis 78
6.1 Analysis of the NASDAQ Index . 78

6.1.1 Descriptive Statistics . 79
6.1.2 Exploratory Data Analysis . 79
6.1.3 Time Series Analysis . 81
6.1.4 ARMA-GARCH Models . 84
6.1.5 Neural Network Models . 92
6.1.6 Support Vector Regression Models . 99
6.1.7 Support Vector Classification Models . 107
6.1.8 Random Forests Models . 108

6.2 Experiments . 113

7 Conclusion 135

A Technical Indicators 149
A.1 Simple Moving Average . 150
A.2 Weighted Moving Average . 151
A.3 Exponential Moving Averages . 151

A.3.1 Single Exponential Smoothing . 151
A.3.2 Double Exponential Smoothing . 152
A.3.3 Triple Exponential Smoothing . 153

A.4 Moving Average Convergence Divergence . 154
A.5 Rate of Change . 154
A.6 Momentum . 155
A.7 Williams’ %R . 155

2

Contents Contents

A.8 Accumulation/Distribution Oscillator . 155
A.9 Relative Strength Index . 156
A.10 Money Flow Index . 157
A.11 Commodity Channel Index . 158
A.12 Bollinger Bands . 158
A.13 Chaikin Oscillator . 159
A.14 Chaikin Volatility . 160

B MATLAB Programs 161

3

Chapter 1

Introduction

Financial forecasting is a broad discipline with many different facets and subgroups; depending
on the part of finance involved, it may refer to e.g. business valuation, estimating a company’s
future revenue, the future financial state of a country, the risk associated with an investment,
etc. In this thesis we focus on the problem of stock market prediction; that is, the prediction
of future prices of assets traded on the worldwide stock exchanges. As the main aspects of the
study, we investigate the predictability of the markets and perform a comparative analysis of
selected prediction models.

As with many disciplines in present day, financial forecasting—and especially the type consid-
ered here—is an interdisciplinary field combining both physics, statistics, finance, mathematics,
economics, and computer science. The interdisciplinary aspect becomes even more pronounced
when looking at the prediction models we will employ in this study, including technical and funda-
mental analysis from finance, conditional mean and variance models from traditional time series
analysis and econometrics, statistical machine learning methods commonly applied in physics
and computer science, as well as a physics-inspired oscillator model.

1.1 Structure of the Thesis

The thesis is organized as follows. The remaining sections in Chapter 1 state our purposes of
the study and give a historical overview of some previous results in stock market prediction.

Chapter 2 describes the financial markets. We raise the fundamental question of their pre-
dictability and discuss different opinions and beliefs. In this regard, we also discuss how the
markets have changed throughout time, especially with the advances in computer technology,
and how these changes may affect the question of predictability. We then list the different ap-
proaches to stock analysis and prediction in general, as well as the particular selection of methods
chosen here. Then we make a detailed description of financial data; its acquisition and avail-
ability, its different types and forms, its use for calculating additional data, and the ways in
which it should be pre-processed and transformed for some of our methods to better understand
it. Finally, we describe the financial disciplines of technical and fundamental analysis, and how
these can be utilized for prediction on their own as well as in combination with other methods.

Chapter 3 deals with forecasting in physics. We discuss several fields in physics where forecast-
ing and prediction is relevant—and in some cases even of vital importance—including weather,
sunspot activity, climate change, and natural disasters such as earthquakes and volcanic erup-
tions. In each case we discuss the similarities to financial forecasting, while also raising the crucial
differences between forecasting natural phenomena such as the weather and human-created con-

4

1.2. Purposes of the Thesis Chapter 1. Introduction

structs such as stock markets. Afterwards, we also show how some problems in finance and
physics are deeply connected and almost identical (e.g. option pricing). Inspired by the differ-
ential equation framework commonly used in both disciplines, and in particular by oscillatory
systems in physics, we build an oscillator model for the fluctuation of stock prices and argue for
the plausibility of the underlying assumptions.

Chapter 4 introduces the necessary theory of traditional time series analysis. We go through
such concepts as stationarity, autocorrelation, and conditional heteroscedasticity. These basics
are then used to describe the theory behind the simple autoregressive and moving average models.
These simple cases lay the groundwork for the more advanced combined models and the composite
conditional mean and variance models, which is what we will ultimately use for prediction.

Chapter 5 provides the theory behind our selection of statistical machine learning methods;
Artificial Neural Networks, Support Vector Machines, and Random Forests. In each case we
describe the relevant theory, the strengths, weaknesses and problems, and how the method is
applied to stock market prediction.

Chapter 6 contains all of our analyses and results. Our main focus is the popular NASDAQ
Index, and we start out with a distribution analysis in which we compute statistical properties and
visually explore the dataset. We then proceed with a time series analysis where we investigate the
presence of autocorrelation and conditional heteroscedasticity (volatility clustering). Afterwards,
we apply the conditional mean and variance models for predicting the future prices and trends in
the NASDAQ Index. We employ information criteria-based model selection to find the optimal
parameters, and assess the prediction performance via different error and performance measures.
We then turn our attention to the machine learning methods. To begin with, we explore the
workings of the models and analyse how their prediction performances vary as we change certain
parameters. This gives a better feel for the methods and at the same time showcases one of
the most important problems in machine learning—overfitting1. After this, we proceed with
numerous experiments. We investigate how well the models perform in one-day ahead prediction
of stock prices. In the different experiments we also analyse the effects of varying e.g.: the amount
of lagged data (both response and external) used to predict the future price; the exogenous inputs,
especially different technical indicators; the amount of data used to train and build the prediction
models; etc.

Chapter 7 is the conclusion where we summarize the study as a whole and list our main
results. We also discuss topics for future work and research.

Finally, the Appendix contains a description of some technical indicators and their inter-
pretation, as well as a description of the MATLAB programs we have written as part of the
thesis.

1.2 Purposes of the Thesis

Drawing inspiration from a multitude of disciplines, each with a vast amount of different ap-
proaches to the intricate goal of financial forecasting, a study like this can be pulled in an
endless number of directions. The limited size of this thesis naturally means that we have to
narrow down the scope to some selected areas of focus. More specifically, we define the purposes
of the study as follows:

• Obtain and present an overview of similar research in stock market prediction through an
examination of the available literature.

1When the model memorizes the patterns in the data used to train it, and thus fails to be able to generalize
to unseen data.

5

1.3. Historical Overview of the Literature Chapter 1. Introduction

• Describe the financial markets, their predictability, the available data, and the disciplines
of fundamental and technical analysis. Furthermore, discuss the evolution through time of
the markets and how this may have changed their psychology and predictability.

• Discuss areas in physics where forecasting plays an important role, and compare them to
financial forecasting. Raise interesting conceptual and methodological similarities as well
as fundamental, crucial differences.

• Examine and review relevant aspects of traditional time series analysis.

• Describe the relevant theory of selected statistical machine learning methods—Artificial
Neural Networks, Support Vector Machines, and Random Forests—and discuss their gen-
eral strengths, weaknesses and problems, as well as their application to financial forecasting.

• Write several computer programs (in MATLAB) for the analysis and prediction of stocks
and other assets.

• Analyse quantitatively and qualitatively the distribution of returns for a selected financial
asset (the NASDAQ Index). Confirm or refute the common assumption of a Gaussian
model and, in the latter case, assess whether another distribution provides a better fit.

• Perform a time series analysis of the NASDAQ Index, with a focus on determining both
quantitatively and qualitatively the presence or absence of autocorrelation and conditional
heteroscedasticity.

• Construct, optimize, and diagnose conditional mean and variance models for the daily
NASDAQ Index data, and compare the forecasting performances for a number of different
models.

• Using as predictors lagged response data and technical indicators, train and test Artificial
Neural Networks, Support Vector Machines, and Random Forests on the daily NASDAQ
data, with a focus on investigating the effects of varying the model parameters and settings.

• In numerous experiments, analyse the performance effects of changing quantities including
e.g. the type and amount of exogenous inputs, the number of lags to use for prediction,
and the amount and frequency of the data, etc.

• Compare the performances for the different models to assess which is the best prediction
method. Furthermore, compare the results to those obtained by some benchmarks to assess
the question of the predictability of stock markets.

1.3 Historical Overview of the Literature

This section gives an overview of some of the relevant literature in the field of financial forecasting.
The main points of interest are the results and accuracies obtained by other researchers, using
the same or different methods, in predicting the stock market. The results of our investigation
are presented in Table 1.3 below, listing the year, the title, and the author(s) of the particular
research articles as well as a short description and the main conclusions and results.

6

1.3. Historical Overview of the Literature Chapter 1. Introduction

Table 1.1: Historical overview of the literature in the field of financial forecasting.

Year Title and author(s) Description Conclusions and results
2000 Financial Time

Series Forecasting
by Neural Network
Using Conjugate
Gradient Learn-
ing Algorithm
and Multiple Lin-
ear Regression
Weight Initializa-
tion, Man-Chung,
Chi-Cheong, Chi-
Chung [6].

A neural network using a conjugate gra-
dient (CG) learning algorithm and mul-
tiple linear regression weight initialization
(MLRI) is compared to the standard case
of a neural network using steepest de-
scent (SD) and random weight initializa-
tion (RI).
Data: daily quotes of eleven stocks on the
Shanghai Stock Exchange.
Inputs: Ten technical indicators, includ-
ing lagged values of the exponential mov-
ing average. All values normalized to
[0.05, 0.95].
Training/test set split: 500/150 (650 in to-
tal) ≈ 75%/25%.
Performance measures: Mean Squared Er-
ror (MSE) and hit ratio.

Best hit ratios:
CG + RI: 73%
CG + MLRI: 73.5%
SD + RI: 72.5%
SD + MLRI: 69%
Although the hit rates are
rather close, the CG learn-
ing algorithm was roughly ten
times faster than SD.

2001 Financial Forecast-
ing using Support
Vector Machines,
Cao & Tay [24]

A comparison of SVMs using Gaussian ker-
nels to a multi-layer perceptron (MLP)
trained by the back propagation (BP) al-
gorithm.
Data: daily quotes of the S&P 500 stock
index pre-processed into Relative Differ-
ences in Percentages (RDP).
Inputs: (1) lagged RDP values and (2)
technical indicators: MACD, OBV, and
Volatility.
Training/test set split: 500/200 (700 in to-
tal) ≈ 70%/30%.
Performance measures: Normalized Mean
Squared Error (NMSE), Mean Absolute
Error (MAE), Directional Symmetry (DS),
and Correct Up/Down Trend (CP/CD).

SVM outperforms BP net-
works in each performance
measure. Hit rates (successful
predictions of up/down move-
ments) on test set:
SVM: 46%
BP: 40%
Compared to BP networks,
SVMs have fewer free param-
eters, train faster, and po-
tentially reach global minima
(whereas BP networks easily
get stuck in local minima).

2001 An Empirical
Analysis of Data
Requirements for
Financial Forecast-
ing with Neural
Networks, S.
Walczak [15]

Examination of the impact of training data
sample size on ANN performance.
Data: daily data of the US Dollar/British
Pound exchange rate.
Inputs: prices with lags of 1, 2, and 5.
Training/test set split: Different total
sample sizes are examined, from 1 year to
21.75 years in one- or two-year steps. Test
set size is 125 observations.
Performance measures: Direction of
change (hit rate).

ANNs using a suitable amount
of recent historical data out-
perform (with ∼ 60% hit rate)
ANNs that use even larger,
older training sets (with <
60%). Reduced training set
size also reduce development
cost and time.
The ANNs with best perfor-
mances used training sets com-
prising daily data for 1 or 2
years. However, the optimal
data samples sizes vary with
application and the particular
asset under examination.

Continued on next page

7

1.3. Historical Overview of the Literature Chapter 1. Introduction

Table 1.1 – Continued from previous page
Year Title and author(s) Description Conclusions and results
2002 A Comparison of

Neural Networks
with Time Series
Models for Fore-
casting Returns on
a Stock Market, J.
Yim [14]

A comparison of feedforward BP ANNs
with ARMA-GARCH, ARMA-EGARCH,
and structural time series (STS) models.
Data: daily quotes and logarithmic re-
turns of the IBOVESPA index on the Sao
Paolo Stock Exchange.
Inputs: logreturns with lags 1 and 9, and
GARCH volatility.
Training/test set split: 948/40 (988 in
total) ≈ 96%/4%.
Performance measures: Root Mean
Squared Error (RMSE), Mean Absolute
Error (MAE)

ANNs are superior to ARCH-
GARCH, ARMA-EGARCH,
and STS.
Volatility derived from
ARMA-GARCH is useful
as an input to ANNs.

2003 Financial Time Se-
ries Forecasting us-
ing Support Vector
Machines, Kim [25]

SVMs with Gaussian (and polynomial)
kernels are compared to BP networks and
case-based reasoning (CBR) for predicting
the direction of change.
Data: daily quotes of the Korean stock
price index, KOSPI, linearly scaled to
[−1, 1].
Inputs: 12 technical indicators.
Training/test set split: 2347/581 (2928 in
total) ≈ 80%/20%.
Performance measures: hit ratio (success-
ful up/down predictions in %)

SVM outperforms both BP
and CBR. Best hit rates ob-
tained:
SVM: 58%
BP: 55%
CBR: 52%
The SVM performance de-
pends on the cost parameter C
and the kernel parameter γ.

2005 Forecasting Stock
Market Movement
Direction with
Support Vector
Machines, Huang,
Nakamori, & Wang
[26]

SVMs with Gaussian kernels are compared
to Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA),
Elman Backpropagation Neural Networks
(EBNN), and the Random Walk (RW)
model (from the EMH) for predicting the
movement direction.
Target data: weekly changes of the Nikkei
225 stock index.
Inputs: S&P 500 index and USD-JPY ex-
change rate, pre-processed through loga-
rithmic transformations.
Training/test set split: 640/36 (676 in to-
tal) ≈ 95%/5%.
Performance measures: hit ratio.
A hybrid/expert model was also made by
combining various methods.

SVM outperforms LDA, QDA,
EBNN, and RW. Hit ratios:
RW: 50%
LDA: 55%
QDA: 69%
EBNN: 69%
SVM: 73%
Expert model: 75%
SVM is strong in itself due to
its ability to reach global min-
ima. Even better results can be
obtained by combining meth-
ods.

2005 Mining Stock Mar-
ket Tendency us-
ing GA-based Sup-
port Vector Ma-
chines, Yu, Wang,
& Lai [27]

SVMs using Genetic Algorithms for pa-
rameter determination and input feature
selection are compared to Random Walk
(RW), Autoregressive Integrated Moving
Average (ARIMA), Backpropagation neu-
ral networks (BP), and normal SVMs for
the prediction of movement direction.
Data: daily quotes of the S&P 500 stock
index.
Inputs: 18 technical indicators.
Training/test set split: 800/200 (1000 in
total) ≈ 80%/20%.
Performance measures: hit ratio.

SVM outperforms LDA, QDA,
EBNN, and RW. Hit ratios:
RW: 51%
ARIMA: 56%
BP: 70%
SVM: 79%
GA-SVM: 85%
GA-SVM not only performs
better, but also computes
faster than BP and SVM.

Continued on next page

8

1.3. Historical Overview of the Literature Chapter 1. Introduction

Table 1.1 – Continued from previous page
Year Title and author(s) Description Conclusions and results
2007 Forecasting Finan-

cial Time Series
with Support
Vector Machines
Based on Dynamic
Kernels, Mager,
Paasche, & Sick
[28]

Different types of SVMs with dynamic ker-
nels are compared to each other and to a
näıve forecasting method for the prediction
of trends and movement direction.
Data: daily quotes of the FDAX stock in-
dex future and the FGBL German govern-
ment bond future, pre-processed into rates
of change (ROC).
Inputs: open, high, low, and closing prices
as well as lagged ROC values.
Training/test set split: 750/250 (1000 in
total) ≈ 75%/25%.
Performance measures: Mean Absolute
Scaled Error (MASE) and hit ratio.

ν-SVR outperforms the other
SVM variants and the nave
forecast. Best hit ratios:
Näıve forecast: 48%
ν-SVR: 83%
SVMs with dynamic kernels
are particularly good for time
series forecasting. More in-
put features and patterns do
not necessarily increase perfor-
mance.

2007 Stock Price Fore-
casting using
PSO-trained Neu-
ral Networks,
Junyou [7]

A feedforward neural network using parti-
cle swarm optimizaton (PSO) for learning
is compared to a normal backpropagation
(BP) neural network.
Data: daily quotes of the Singapore stock
market index, scaled to [0.1, 0.9].
Inputs: lagged prices.
Training/test set split: 506/252 (758 in to-
tal) ≈ 67%/33%.
Performance measures: Mean Absolute
Percentage Error (MAPE).

MAPE results (lower are bet-
ter):
PSO: 0.75
BP: 0.91
Using PSO is not only faster
but also yields better results
than the usual BP learning al-
gorithm.

N/A Forecasting of In-
dian Stock Market
Index Using Arti-
ficial Neural Net-
work, Majumder &
Hussian, [18]

An examination of neural networks with
different structures, inputs, and training
algorithms.
Data: daily closing prices (pre-processed
into logarithmic returns) of the S&P CNX
Nifty 50 index.
Inputs: lagged response data.
Training/test set split: N/A.
Performance measures: Direction of move-
ment (hit rate).

Accuracy / hit rates:
Best: ∼ 89%.
Average: ∼ 70%.

2009 Forecasting Model
for Crude Oil Price
Using Artificial
Neural Networks
and Commodity
Futures Prices, S.
Kulkarni, I. Haidar
[17]

Multi-layer feedforward NN
Data: daily quotes of crude oil spot prices.
Inputs: lagged response data and futures
prices as exogenous input (also with lags).
Training/test set split: ≈ 70%/30%.
Performance measures: Price direction ac-
curacy (hit rate).

Accuracy / hit rates:
1-day ahead: 78%.
2-day ahead: 66%.
3-day ahead: 53%.

2012 Comparative
Study of Static and
Dynamic Neural
Network Models
for Nonlinear Time
Series Forecasting,
Abounoori et al.
[16]

Comparison between two static networks
(Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) and Multi-layer Feedforward
NN (MFNN)) and one dynamic model
(Nonlinear Neural Network Autoregressive
model (NNAR)).
Data: returns of the Tehran Stock Ex-
change (TSE) index.
Inputs: response data with lags from 1 to
5 (for ANFIS and MFNN) and 1 to 10 (for
NNAR).
Training/test set split: ≈ 70%/30%.
Performance measures: MSE and RMSE.

ANFIS has a higher forecasting
ability (lower MSE and RMSE)
than MFNN and NNAR.

9

Chapter 2

Financial Markets and Data

This chapter concerns the financial markets. The term refers to the worldwide exchanges on
which both private investors and professional corporations alike can buy, sell, and trade stocks,
commodities, currency, and countless other types of financial instruments.

We begin by discussing the fundamental question of whether or not the markets can be pre-
dicted. Later, we delve into the data related to financial markets and stocks in particular. We
describe how the data can be acquired, how the raw version can be used to compute additional
types of data, and how it should be pre-processed and transformed before being used for predic-
tion. We also describe technical and fundamental analysis and how we have made use of these
fields and their related data.

2.1 Predictability of the Markets

The prediction of stocks, and financial markets in general, is a delicate topic, subject of much
debate. The fundamental question is whether stocks and markets can be predicted at all. There
are different opinions in this regard; some say that it is possible, some say that it is possible
to some extent, and others believe that it is wholly impossible. In this regard, there exists
something called the Efficient Market Hypothesis.

2.1.1 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) has three forms of varying strength:

• The weak form of the EMH claims that stock prices already reflect all past publicly available
information. Future prices cannot be predicted by analysing prices from the past, rendering
it impossible to consistently produce excess returns using technical analysis (though some
forms of fundamental analysis can still work consistently). There are no serial dependencies
between share prices, meaning that there are no “patterns”; future price movements are
determined entirely by information not contained in the price series.

• The semi-strong EMH incorporates the weak form and further says that prices instantly
change to reflect new public information. Thus, no excess returns can be made by trading
on this new information. This implies that neither technical analysis nor fundamental
analysis will be able to consistently produce excess returns.

10

2.1. Predictability of the Markets Chapter 2. Financial Markets and Data

• The strong EMH contains both of the weaker forms and further states that prices instantly
reflect even hidden or “insider” information. It is thus wholly impossible for anyone to
earn excess returns.

From the three forms above, the basic idea behind the EMH is that stocks (and other traded
assets) always trade at their fair price, which entails that it is impossible to outperform the
overall market, and, relevant for our case, that it is pointless to try to predict trends. Thus,
with our “humble” goal of predicting the stock markets, successful predictions will support a
refutation of the Efficient Market Hypothesis (at least the weak form), whereas failure and poor
predictions will support the EMH itself.

Random Walk Benchmark Model

Later, in our experiments in Section 6.2, we employ different models for stock market prediction.
To assess the performance of these models we compare them to each other. But to see how well
these models fare overall, and to assess the question of the predictability of the markets, we
also compare them to some benchmarks. We call one of these benchmarks the Random Walk
model, or the “tomorrow equals today” model, and it has close ties to the weak form of the EMH
discussed above.

The model’s prediction for tomorrow’s stock price is just today’s price. As such, it says that
stock prices are a martingale. A martingale is a sequence of random numbers y0, y1, . . . with
finite means such that the conditional expectation of yn+1 given y0, y1, . . . , yn is equal to yn,
i.e.,1

E[yn+1|y0, y1, . . . , yn] = yn. (2.1)

If yi denotes a stock price at time i, then this equation says that the expected value of next
period’s stock price yn+1 is equal to the current period’s stock price yn.

Now enters the “Random Walk” part of the model. An example of a martingale is a one-
dimensional Random Walk with steps equally likely in either direction. A Random Walk is
basically just a series of a number of random steps.2 Stock price fluctuations may be modelled
in this way; for example, the Black-Scholes formula for option pricing uses a Gaussian Random
Walk to model the price of the underlying stock.3 For stocks, equally likely steps in either
direction entails that the price is equally likely to increase or decrease, which is quite plausible
if one assumes random price fluctuations. If stock prices follow a Random Walk, then we cannot
hope predict them, which is in line with the EMH.

We now connect the Random Walk, martingale prices, and the EMH. First, modelling stock
prices as a Random Walk as explained above means that they are a martingale. And to say that
stock prices are a martingale is essentially to say that they are weak-form efficient. To see this,
recall that the weak form of the EMH says that knowledge of all past prices is not informative
regarding the expectation of future prices. A martingale is a special case of weak-form efficiency
which says that the expected future price next period is equal to the current price.

The Random Walk model thus provides a highly interesting benchmark that our other models
can be compared against. If our other models (ARMA-GARCH, Neural Networks, Support
Vector Machines, and Random Forests) yield significantly better prediction performances than

1[85]
2The random walk also has plenty of ties to e.g. physics. First, a random walk with very small steps provides

an approximation to a so-called Wiener process, which is a stochastic process with similar behaviour to Brownian
motion. And Brownian motion is exactly the physical phenomenon describing the random motion of a particle in
a fluid (liquid or gas) resulting from its collision with atoms or molecules in the gas or liquid.

3We discuss option pricing a bit more in Section 3.3. See also [48].

11

2.1. Predictability of the Markets Chapter 2. Financial Markets and Data

the Random Walk model, then we have empirical evidence that the stock markets may be
predicted to some extent. On the other hand, if our models fail to outperform the Random
Walk benchmark, then this may be viewed as support for the Efficient Market Hypothesis and
the unpredictability of the markets.

2.1.2 Human Psychology vs. “Computer” Psychology

The previous sections discussed the efficiency of the markets through the EMH. One might also
argue against the predictability of the markets from another, perhaps more intuitive point of
view; namely, the nature of financial markets and the human psychology.

Weather and earthquakes, planet orbits and particle interactions, and physical reactions
in general are all natural phenomena. We can predict these to some extent. Equity, stocks,
currency, etc., on the other hand, and the financial markets on which these are traded, are all
human constructs. As such, they are largely dominated by human psychology; our opinions of
the people sitting on the board of a company, our expectations for the future earnings, etc. The
human mind is complex, and our behaviour varying and unpredictable—sometimes erratic, but
always influenced by feelings and emotions. Hence, it may be a vain hope trying to predict our
actions—especially when something like money is involved, as is certainly the case for financial
markets.

In recent years, however, with the advent of new technology and rapidly increasing com-
puting power, automated trading systems are seeing more and more use. These are computer-
programmed systems that trade after certain rules or algorithms. With the increase in such
systems, the role of human psychology on the financial markets may be less influential—replaced,
instead, by some sort of “computer psychology.” Instead of clicking the “buy” or “sell” button
with our own nervously shaking fingers, the computer—without a moment’s hesitation—takes
the decision for us. A decision made on the basis of certain patterns in the data, including e.g.
technical indicators, etc. Thus, with more and more people—and, indeed, the large investment
banks—using automated trading systems, some of the signals and patterns observed in the mar-
kets almost become self-fulfilling prophecies. For example, assume that a lot of traders (humans
or their automated computer systems) use a particular trading system—based e.g. on one or
more technical indicators—and these indicators show that a certain stock is oversold and a trend
reversal is imminent. Then, if the traders collectively act on this by buying said stock, the stock
may actually rise and do as the trading algorithm predicted. This “herd”-like behaviour of many
market agents acting the same can thus cause computerized, automated trading systems and al-
gorithms to be self-fulfilling prophecies. As a whole, this technological development, or evolution,
may to some extent increase the plausibility of and possibility of predicting the markets.

2.1.3 Overview of Methods

The discussions above of the Efficient Market Hypothesis, human psychology, and the technolog-
ical advances in our modern world all deal with the question asking if the financial markets can
be predicted. Assuming, of course, that they to some extent can be predicted4, the question now
arises of how. There are various ways to go about this, but they can generally be summarized
by the following four major classes:

• Technical Analysis attempts to predict trends and future prices by means of various tech-
nical indicators such as moving averages, momentum, trend lines, pattern analysis, etc. It

4“Prediction” here is a loose term, since we do not at all expect, or aim to, predict the exact values of future
stock prices; rather, we are more interested in trying to determine the general trends, whether the stock will
increase or decrease, etc.

12

2.2. Financial Data Chapter 2. Financial Markets and Data

is used mainly for investments with shorter time horizons.

• Fundamental Analysis uses an in-depth analysis of a company’s performance and growth
prospect compared to the overall economic conditions. It is used mainly for long-term
investment decisions and strategies.

• Time Series Forecasting analyses past data to estimate future values. This is done by
modelling a non-linear function by a recurrence relation, the parameters of which are
derived using past data. This recurrence relation is then used to estimate future, unknown
prices.

• Machine Learning trains a computer to learn patterns and trends in data. This is done by
establishing a model based on some training data, and then facing it with unseen data to
test its generalization ability and performance.

The approach pursued in this study uses ideas, aspects, and methods from all of the above
disciplines and more, making us span an array of fields including physics, statistics, computer
science, mathematics, finance, and economics. More specifically, we will use technical and funda-
mental data as input in prediction models taken from time series analysis and machine learning.
Selected in part on the basis of similar research as well as our own experience and curiosity in
the field, the methods and theoretical frameworks employed here are:

• Technical and Fundamental Analysis5

• Conditional mean and variance (ARMA-GARCH) models

• Artificial Neural Networks

• Support Vector Machines

• Random Forests

• Oscillatory systems

2.2 Financial Data

A truly massive amount of financial data exists, and the number just keeps increasing with
every passing day on the financial markets. Everything is recorded somewhere, from huge-scale
company buyouts to tiny personal transactions on the stock exchanges, changes in both nation-
wide and world-wide economies, etc. Consequently, many different formats of data exist—and
considering also the many ways of processing these data, countless more data types do so.

This section explores some of the different types of data, both raw and derived alike. Fur-
thermore, we describe which data formats have been used in the later analysis, the reasons for
these choices, and how and from where the data have been acquired.

2.2.1 Data Acquisition

Depending on the type and format sought, financial data are not the easiest to come by. Of
course, checking the stock price of a major company for the current day is easily done by opening
a newspaper—or, more likely, the Internet. Many websites also provide visual representations of

5We focus primarily on technical analysis. The use of fundamental analysis is a topic for future work.

13

2.2. Financial Data Chapter 2. Financial Markets and Data

the stock price evolution through time, and some even have analysis tools, technical indicators,
etc. However, if one wishes to perform one’s own analysis from scratch, using e.g. historical time
series data ranging many years back, then a further search through cyberspace is needed. Now, if
one is not directly in contact with a bank or investment company and has access to their market
databases, getting financial market data can require payments if the data are to have a certain
quality. However, free financial data are in fact available on the Internet; some good sources, we
have found, include Yahoo! Finance, Google Finance, and Quandl.6 These sources provide data
for stocks, indices, commodities, currencies, bonds, futures, options, etc. Most importantly for
our case, however, they provide daily, weekly, and monthly data for an abundance of different
stocks. Regarding data for shorter time scales—so-called high-frequency data—we have, after
browsing through numerous websites, come to the conclusion that it generally comes at a price,
and free data of this sort seems very difficult and almost impossible to come by.

2.2.2 Raw Data

In this study we are mainly concerned with the stock market—individual stocks as well as indexes
comprising many stocks. However, for the sake of broadening the analysis, we will also consider
some commodities and currencies to see if forecasting and prediction might work better on these
than on stocks. The data available for currencies and commodities is slightly different than for
stocks, with fewer types available; often, only the price itself is available. For stocks, however,
which is our main focus, a wide array of data are available. This includes fundamental company-
related numbers like debt, earnings, and other data than can be extracted from budgets and
accounts. This type of data is used in fundamental analysis of stocks. On the other side, we
have the more technical data associated with the stock as it is quoted on the markets. This,
and the data than can be derived from it, is what we will mainly be using in the forecasting and
prediction models. Recordings of this raw data consists of the following:

Date: The date, or time, of the recording.

Open: The price of the stock upon the opening of the market on which it is quoted; i.e. the
stock price at the beginning of the time period.

High: The highest value of the stock price during the time period under consideration.

Low: The lowest value of the stock price during the time period under consideration.

Close: The price of the stock when the market closes; i.e. the stock price at the end of the time
period.

Adjusted Close: The closing stock price adjusted for any dividends or stock splits.

Volume: The amount of stocks traded in the time period.

Evidently, these data depend on the time period, or time frame, considered. This results in
even more available data, and even more choices to make as to what type of data to use. If the
stock prices are quoted on a daily basis, the opening price is, of course, the stock price when the
financial markets open on a particular trading day, and likewise for all the other data. Similarly
for e.g. weekly and monthly data. As mentioned earlier, there exists also high-frequency data
where the prices are quoted every few minutes, or seconds even. Finally, there exists so-called
tick data which records the price changes from trade to trade. All of these different possibilities

6http://finance.yahoo.com/, https://www.google.com/finance, http://www.quandl.com/.

14

2.2. Financial Data Chapter 2. Financial Markets and Data

lead to the problem of which time frame to use. Due to the restricted availability of (free)
high-frequency data, we will mainly be concerned with daily data.

Related to the problem of choosing the appropriate time scale is also the question of whether
to use the physical time, the trading (or market) time (this is the most common type, which we
also use here), or the number of transactions. There are merits and drawbacks for each choice,
some of which are related to e.g. the fact that stock exchanges close at night, over weekends,
during holidays, etc., as well as the fact that activity on the markets (when they are open)
heavily depends on the social organization of business, time zones, etc. For a further discussion
on these aspects—as well as some empirical evidence—see e.g. [3]. The raw data that will be
used in this study belongs to the time scale of trading/market time, and it will mainly consist
of the adjusted closing price for daily, weekly, and monthly data.

2.2.3 Derived Data and Data Preprocessing

The type of data mentioned above is seldom used in its raw form. Rather, it is often processed, or
transformed, in one way or another, as well as used for the computation and derivation of other
data. This expands the pool of available data even further, giving the researcher or practitioner
even more options to choose from.

Now, consider a time series of stock prices, with the price at time t defined by p(t) ≡ pt. As
will be discussed later (in e.g. 4.1.1), it is inadequate to use this data for time series analysis and
as input in machine learning methods, the main reason being its non-stationarity). The question
then arises of which variable to investigate instead. Below, we list the most common choices and
describe their respective merits and problems.

Price change:
In this case, one considers the simple price difference dt between two subsequent times:

dt = pt − pt−1 (2.2)

The positive thing about this approach is that nonlinear or stochastic transformations are
not needed. The problem, however, is that the definition is seriously affected by changes
in scale.

Discounted price change:
The discounted, or deflated, price change is defined by

d̃t = (pt − pt−1)Dt, (2.3)

where Dt is a discounting, or deflation, factor that makes the prices be given in terms of
“constant” money. Again, nonlinear transformations are not needed. As for the problem,
the discounting factor is unpredictable over the long term, and nor is there a unique choice
for it.

Return:
The return is defined by

rt =
pt − pt−1
pt−1

(2.4)

This approach has the merit that returns provide a percentage gain or loss between subse-
quent times. On the other hand, the problem is that returns are sensitive to scale changes
for long time horizons.

15

2.2. Financial Data Chapter 2. Financial Markets and Data

In fact, the above formula is the one-period return; that is, we consider the return in the
period between t − 1 and t. We can readily generalize this to a multiperiod return. If we
consider the return for the k periods between t− k and t, the k-period return is given by

rkt =
pt − pt−k
pt−k

(2.5)

Logarithmic return:
This approach uses the difference between two subsequent times of the logarithm of price:

rt = log pt − log pt−1 = log
pt
pt−1

(2.6)

With this approach the average correction of scale changes is incorporated without the
need for discounting factors. The problems are related to the fact that the definition partly
relies on the growth rate of the economy being constant (which it generally is not) as well
as the fact that it utilizes a nonlinear transformation through the logarithm.

As the simple return above, the logarithmic return can also be generalized to multiple
periods. The k period logarithmic return is, of course, just

rkt = log pt − log pt−k = log
pt
pt−k

(2.7)

Logarithmic returns, also called continuously compounded returns, enjoy some advantages
over simple returns. First, it can be shown [40] that

rkt = r1 + rt−1 + . . .+ rt−k+1. (2.8)

Thus, the logarithmic multiperiod return is simply the sum of the logarithmic one-period
returns. Second, statistical properties of logarithmic returns are more tractable.

In the high-frequency domain, all four definitions are approximately equal [3]. For investi-
gations concerning longer time periods, however, the most common choices are the latter two
definitions; the return and the logarithmic return. In this case, we will use the logarithmic return.

Finally, an interesting and highly relevant type of data is the volatility. A common concept in
financial analysis, the volatility V describes the variability of a stock price p, or more specifically
the variability in returns r, and is used primarily as an estimate of investment risk. The standard
definition is

V =

√√√√ 1

N − 1

N∑
t=1

(rt − r̄), (2.9)

where N is the number of observations in the time series, rt is e.g. the logarithmic return

rt = log pt
pt−1

, and r̄ is the mean r̄ =
1

N

N∑
t=1

rt.

Evidently, with this definition, the volatility equals the standard deviation of the return series
rt. Now, the volatility of stocks and other financial assets is generally seen to be time dependent;
that is, the financial markets often exhibit periods of large swings—so-called volatile periods—
followed by periods of smaller ups and downs. For this reason, if the volatility is to be used as
an input in a model, a sliding window approach is often applied; here, the series is split into
“windows,” or periods, of a certain time length, and then the volatility is calculated for each

16

2.2. Financial Data Chapter 2. Financial Markets and Data

window to encompass the time-varying nature. As mentioned, the volatility is of great interest
for financial analysts in regards to e.g. estimating investment risk. Moreover, relevant for our
particular case, the volatility may be used as both input and output in prediction models. In
fact, it has been shown empirically that volatility and predictability of financial time series are
connected, although a theoretical explanation does not exist [12].

2.2.4 Technical and Fundamental Data

The above description and discussion dealt with transformations of the raw data in order to
obtain a series that is better and easier to work with. But the raw data can also be used to
derive an abundance of other data. Mainly of a technical nature, these forms of derived data are
used extensively in technical analysis. They include indicators and oscillators such as moving
averages, momentum, relative strength index, etc. We return to this shortly in Section 2.3 and
give a detailed review of numerous technical indicators in Appendix A.

Apart from the raw data, its transformations, and the technical data that can be derived
from it, we have another type of data: fundamental data. This is information concerning the
activities and the financial situation of companies and the general economy. Most companies that
are quoted on the markets are analysed on a regular basis by professional analysts at financial
institutions. Supposed to give an indication of the “true” value of the company’s stock, the
analyses are often accompanied by a “buy” or “sell” recommendation. Such a fundamental
analysis of a company typically focuses on the following three factors.

The general economy:
Some of the general economical factors that can affect the company (e.g. through im-
port/export, etc.) include:

• Inflation.

• Interest rates.

• Trade balance.

The state of the relevant industry:
The condition of the industry to which the company belongs can have a significant effect.
Influencing factors may include:

• Stock indexes (i.e. weighted means of a wide array of individual stocks) such as the
US “S&P 500” or “Dow Jones”, the German “DAX”, the Danish “C20”, etc.

• The value of competitors’ stocks.

• The prices of related commodities such as oil and metals, as well as currencies.

The state of the company:
This information is extracted from the company’s financial statements, budgets, and ac-
counts, from which a number of useful variables can be calculated:

• P/E (Price/Earning): The stock price divided by the earnings per share during the
last 12 months.

• Book value per share: Net assets (i.e. assets minus liabilities) divided by the total
number of shares.

• Net profit margin: Net income divided by total sales.

• Debt ratio: Liabilities divided by total assets.

17

2.2. Financial Data Chapter 2. Financial Markets and Data

• Prognosis of future profits.

• Prognosis of future sales.

Some of the work performed by professional analysts is not publicly available, but there is
still plenty of fundamental data available in financial magazines and on the Internet. However,
when it comes to huge amounts of data in machine readable form, the availability of technical
data is far better than for fundamental data.

Even though it is an interesting aspect of research, it is beyond the scope of this thesis to go
into detail on the theory of fundamental analysis. We will include some fundamental data in a
few experiments, but in terms of finance theory our focus is still on technical analysis.

2.2.5 Data Transformations

Above, we have described a wide array of raw, readily available data as well as computed and
derived data. However, before this data is used as inputs in the prediction models it is often
transformed in certain ways.

First, and perhaps most importantly, there is normalization, the purpose of which is to
reduce range differences in the input variables. Since we work with both cross-sectional data in
the form of different input variables as well as longitudinal data in the form of time series, we
distinguish between two major types of normalization. First, the size differences between different
input variables must be reduced to enforce similar behaviour in the modelling algorithms. For
instance, before feeding data to an artificial neural network, all variables are often scaled to
the range [0, 1]. Second, the size differences over time in an input time series must be reduced
to remove the non-stationary effect, as will be discussed in more detail in 4.1.1. For example,
if one considers the evolution of a stock price over several years, the values will often vary by
large percentages; e.g. if a company started out really small but then worked its way up to be
a major player on the markets. Several normalization procedures exist, the most common of
which include transformations to relative changes (returns) as in (2.4) or logarithmic returns as
in (2.6), or normalization using the mean and standard deviation. The return transformations
were described and discussed earlier. As for the normalization using the mean and standard
deviation, this is defined for some time-dependent variable y(t) as

yn(t) =
y(t)− µy(t)

σy(t)
, (2.10)

where it is important to note that the mean value µy(t) and standard deviation σy(t) are com-
puted using a running window of a certain length n, e.g. 30 days backwards. As mentioned in
the earlier discussion of volatility, this better takes into account the time-dependent nature of
the data. The resulting, normalized variable yn(t) then measures how many standard deviations
the y values differ from their running mean.

Another transformation is linearization, which achieves the often advantageous task of
removing obvious nonlinear factors that would otherwise have to be taken care of in the modelling.
As an example we have the volume V (t), which denotes the number of assets traded. This
quantity is often distorted by extremely high figures resulting from individual trades by large
institutions such as hedge funds, investment banks, etc. The linearization in this case may be a
type of pre-processing function that squashes the data and suppresses values outside a certain
boundary. For example, the input V (t) may be transformed to Ṽ (t) via

Ṽ (t) =
1

1 + exp(−V (t))
. (2.11)

18

2.3. Technical and Fundamental Analysis Chapter 2. Financial Markets and Data

Finally, a good way to reduce the complexity of the prediction models—and thus optimize
and improve them—is through dimensionality reduction. We will most likely have a lot of
different inputs, which somewhat contrasts the goal of simple, parsimonious models. Therefore,
it is sometimes useful to combine some of these many inputs and compute aggregate entities to
be used instead. Examples are running means (moving averages) of the closing price p(t), the
high pH(t), the low pL(t), and the volume V (t). In this regard, the three prices p(t), pH(t), and
pL(t) may also be combined into a so-called typical price

(
p(t) + pH(t) + pL(t)

)
/3. The volume

may also be included in such a new aggregate variable.
An efficient technique for dimensionality reduction of a dataset is also provided by so-called

Principal Component Analysis (PCA). This works by finding a linear transformation T which is
applied to the original dataset consisting of a number of p-dimensional vectors. The transformed
vectors are still p-dimensional, but T is computed in such a way that the variances along each of
the new p dimensions are sorted in descending order by their sizes. A dimensionality reduction of
the dataset can then be performed by ignoring the dimensions with the smallest variances. The
mean-squared error can be shown to be the sum of the variances of the truncated dimensions.
The transformation T is computed by solving an eigenvalue problem, a common occurrence in
linear algebra. The eigenvectors of the resulting correlation matrix correspond to the axes in the
new transformed coordinate system, and the eigenvalues correspond to the variances measured
along each of these axes. PCA has been successfully applied for dimensionality reduction in
many areas including both image and speech recognition [13].

2.3 Technical and Fundamental Analysis

Technical analysis is the study and analysis of a security’s7 historical price and volume data in
an effort to determine, or forecast, the direction of future prices.

Technical analysis has been around for a very long time, some aspects of it dating as far
back as the 17th century with Joseph de la Vega’s account of the Dutch markets [88]. Accounts
on technical analysis were also developed in Asia in the 18th century and are said to be the
precursor of today’s immensely popular technique of candlestick charting8 [89]. However, the
strongest, most influential roots of modern-day technical analysis stem from Dow Theory, devel-
oped around 1900 by Charles Dow and further organized and collectively represented by William
Peter Hamilton and later by Richard Wallace Schabacker [90], [91]. Other pioneers in the early
20th century include also Ralph Nelson Elliott, the developer of the popular Elliot Wave The-
ory9. More technical analysis tools and theories have been developed and enhanced in the recent
decades, with an increasing emphasis on the use of computers for automated techniques and
trading systems.

Contrasting fundamental analysis—the study of economic factors, such as e.g. earnings,
dividends, and other company-related data as well as interest and exchange rates, etc., that
influence the way investors price financial markets—technical analysis relies almost exclusively
on raw historical data of price and volume10. In this regard, technical analysts employ a variety of
methods, tools, and techniques, a popular one of which is the use of charts. Using charts, which
plot the prices as a simple line, or in a more advanced way like in the candlestick technique

7Here, the term security refers to any tradable financial instrument; e.g. stocks, bonds, commodities, futures,
indices, options, etc.

8Rather than showing the price time series as a simple line, candlestick techniques utilize several technical
data, plotting them all in a combination of a line and a bar plot.

9In short, the technical analysis form of Elliot Wave Theory asserts that market prices unfold in specific
patterns, or so-called Elliot waves, which consequently allows for forecasts of future prices [92].

10The volume of a financial asset is the amount of trades made in a given time period.

19

2.3. Technical and Fundamental Analysis Chapter 2. Financial Markets and Data

described above, and the volume as a bar graph, analysts seek to identify price patterns and
trends in a stock, or other security, for the purpose of forecasting future prices—and ultimately
for the purpose of financial gain. These price patterns range everywhere between simple ones
to the more obscure, exotic formations bearing odd names such as “flag and pennant” or “cup
and handle” patterns. This latter class of technical analysis techniques will not be considered
here, as it often requires the practitioner to closely monitor the price chart, draw lines and other
shapes on it, and then wait for it to resemble a given pattern.11 This renders it very difficult to
properly implement the techniques in a computer routine. Rather, what we will be concerned
with in regards to technical analysis is the study of moving averages and other technical indicators
that give information on e.g. the strength and direction of price trends. These indicators are
all derived and calculated from the historical price and volume data, and can thus be coded
somewhat easily as computer routines. Based on these indicators and their interpretations, we
will attempt to forecast the future movement directions and prices of a selection of assets. In
addition to this, our goal is also to employ these technical indicators and their interpretations as
input in other forecasting methods; especially interesting is the use in machine learning methods
such as Artificial Neural Networks, Support Vector Machines, and Random Forests, all of which
we shall return to in Chapter 5.

Finally, we give a thorough description and discussion of a wide array of technical indicators
in Appendix A.

11For an exhaustive description and discussion of technical analysis, see e.g. [101]

20

Chapter 3

Forecasting in Physics

This chapter highlights some of the areas in physics that make use of forecasting and prediction.
We also describe, mostly in words, some of the methods applied in these areas.

Our primary focus is on weather forecasting, and we begin by making a thorough compar-
ison between this discipline and financial forecasting. We highlight numerous similarities, but
later on also some crucial differences. In these discussions we also touch upon chaos theory—a
field of study very often encountered in physics. Later, after going through some mathematical
methodologies shared by physics and finance (the numerical solution of differential equations),
we construct a differential equation framework for modelling—and predicting—the fluctuation
of stock prices. Our model draws inspiration from oscillatory systems in physics.

3.1 Weather Forecasting

Forecasting in general is an age-old discipline; for centuries, humans have speculated about many
different aspects of the future and tried to improve their conjectures by observing nature, each
other, and the entire world and what lies beyond. Indeed, forecasting is not mere speculation
or blind guessing; it is qualified hypotheses founded on sound reason, thorough considerations,
and, not to forget, science.

Financial forecasting, as considered in this thesis, is a relatively new area in this regard. Of
course, speculation about the future prices of grain and gold has been around since the beginning
of trade, but the modern version of financial forecasting—the systematic, technical approach—
only dates back so far as the proper establishment of the financial markets and the invention of
computers.

Turning to weather forecasting, this discipline actually has a lot in common with financial
forecasting. Human beings have attempted to predict the weather informally for millennia—and
formally so since the nineteenth century with the availability of more modern tools. The history
of both the informal and formal approach is rather similar to that of financial forecasting. Indeed,
the two disciplines are closely connected in certain regards; for example, the weather can mean
the difference between a profitable harvest or a ruined one, and knowledge about the weather
can significantly aid one in properly preparing for the season. Likewise, it can be an incredibly
helpful tool when speculating in stocks and commodities related to e.g. agriculture.

Now, focusing on the more modern versions of the disciplines, the object of prediction in
financial forecasting is the financial markets, quantified by e.g. prices, volatility, risk, etc. In
weather forecasting, the object of prediction is the atmosphere, and in more quantifiable terms
such things as temperature, precipitation, and wind. Other indicators that are used to forecast

21

3.1. Weather Forecasting Chapter 3. Forecasting in Physics

the weather include: humidity, air pressure, solar radiation, Earth’s rotation, water cycle, sea
level pressure, sky cover, dew point, etc. Some aspects of weather forecasting employ past values
of these indicators in order to forecast the future. The resemblance to the technical approach
to financial forecasting is remarkable; here, one attempts to predict e.g. the future stock price
using past values of both the price and a number of so-called technical indicators. Derived from
data such as the high, low, and closing prices of the stock, and the amount of assets traded (the
volume), these technical indicators can be viewed as the financial pendant to e.g. humidity and
pressure in weather forecasting.1 For example, one of the weather indicators is wind velocity
(direction and speed), which is clearly a sort of rate of change. We meet similar indicators in
finance; for instance, a popular tool in technical analysis is a stock’s Momentum—an indicator
measuring the rate of change (direction and speed) of the price.2 A most common quantity in
e.g. mechanics and many other fields in physics is also the acceleration. Similarly, one may
compute, based on historical data, the acceleration of a stock’s price. Both the momentum and
acceleration of a stock may be used as technical tools to estimate “where the price is headed”
(the trend) and how quickly and strongly it may be headed there.

In finance, the technical indicators are derived from the available technical data (see Section
2.2) and the fundamental data comes from the companies’ budgets, accounts, etc. The case is
naturally quite different when it comes to the weather. Of course, data are obtained by observing
the atmosphere, and one of tools that help with this task are satellites. Weather satellites are
invaluable for viewing large weather systems on a worldwide scale. They show cloud formations,
large weather events such as hurricanes, and other global weather systems. With satellites,
forecasters are able to see weather across the entire globe: the oceans, continents, and poles.
Recent satellite data is very detailed, even to the point of showing states and cities.

In financial forecasting, the pendant to satellites could be, say, the news media (newspapers
a decade or two ago, but the Internet in present time), banks, and other institutions, or perhaps
more specifically the people (or machines, rather) that aggregate all the available financial data
and relay it to the public, including private and professional practitioners and forecasters. Just
as weather satellites began to see the light of day during the second half of the 20th century, so
is the organized availability and accessibility of financial data a thing of the last few decades.

So far, we have only discussed weather forecasting in loose, general terms. We now dive a
little bit deeper by considering the different layers and the workings of how forecasts are actually
made.

The numerical branch of weather forecasting is basically the attempted prediction of the
future state of the atmosphere. The atmosphere is a fluid, and as such, the prediction of its
future state is done by sampling its current state and using the equations of fluid dynamics
and thermodynamics. The solution to a fluid dynamics problem typically involves calculating
various properties of the fluid, e.g. temperature, velocity, pressure, density, as functions of
space (how the governing quantities vary across the globe, for different continents, countries,
etc.) and time (how the properties vary e.g. from day to day). These properties are exactly
some of the aforementioned weather indicators. Solving the fluid dynamics problem, and thus
obtaining the weather forecast, is then done by first initializing models using this observed data.
This starting point for the forecast is then fed to a set of equations—the so-called primitive
equations—governing the physics and dynamics of the atmosphere. The primitive equations are
a set of nonlinear partial differential equations (PDEs) comprising:

1Of course, fundamental indicators such as a company’s earnings, debt, etc. should also be included here. This
thesis just mainly considers the use of technical indicators for financial forecasting.

2We give a detailed description and discussion of a wide array of technical indicators in Appendix A.

22

3.1. Weather Forecasting Chapter 3. Forecasting in Physics

• Conservation of momentum, consisting of a form of the Navier-Stokes equations.34

• A thermal energy equation relating the temperature (as a function of time and place)
of the system to heat sources and sinks.

• A continuity equation representing the conservation of mass.

These nonlinear PDEs are generally impossible to solve exactly through analytical methods.
Therefore, numerical methods are used to obtain approximate solutions. In numerous fields
including weather forecasting, a very common and popular approach to the numerical solution
of differential equations are Finite-Difference Methods5. Here, the main idea is to discretize the
continuous temporal and spatial dimensions into a discrete grid. The observed, current data
are used as initial conditions. Using these values in the discretized equations, one can compute
the state of the atmosphere at the next time step—i.e. predict the state a short time into the
future. The equations are then applied to this new atmospheric state, which yields predictions
at a further time step into the future. Using this time stepping procedure, we can continue to
advance forward in time until the solution reaches the desired forecast time (e.g. a forecast of
tomorrow’s weather, or perhaps a weekly 5-day forecast).

Now, had the system been deterministic and insensitive to initial conditions, we would have
been able to precisely predict the weather for all time to come. But the reality is not so. The
atmosphere has a chaotic nature; it is a nonlinear dynamical system, and even though it is de-
terministic6, it cannot be precisely predicted because it is highly sensitive to initial conditions.
Small differences in initial conditions (such as those due to rounding errors in numerical compu-
tation) yield widely diverging outcomes for such chaotic systems, rendering long-term prediction
impossible in general. The heart of chaos theory was beautifully summarized by Edward Lorenz
in 1963: [52]

“When the present determines the future, but the approximate present does not ap-
proximately determine the future.”

Thus, due to the chaotic nature of the atmosphere, it is limited how far we can step forward
in time before the errors become too large, and hence the results and predictions too uncertain
and unusable. As also proposed by Edward Lorenz in 1963, long range forecasts, those made at a
range of two weeks or more, are impossible to definitively predict the state of the atmosphere. It
has been found that, in numerical weather models, extremely small errors in initial values double
roughly every five days for variables such as temperature and wind velocity [51]. Nowadays,
the horizon in weather forecasting is often about 5-7 days. This is also what we can read and
see in the news with weekly 5-day weather prognoses. But as we also experience from time to
time, these forecasts do not always hold exactly—which is the chaotic nature of the atmosphere
and the errors in initial conditions that are making themselves felt. However, with the constant
technological advances (satellites, computers, etc.), we continually push the borders of precision
and may soon see more accurate forecasts for even longer horizons.

3The Navier-Stokes equations are nonlinear partial differential equations dictating not position but rather
velocity. A solution of the equations is in the form of a velocity field, which is a description of the velocity of the
fluid at any given point in space and time.

4It is beyond the scope of this thesis to go into any further detail on e.g. fluid dynamics and the underlying
theory. For a thorough examination, we refer to e.g. [50].

5For a good examination of finite-difference methods, and numerical methods for differential equations in
general, we refer to e.g. [4].

6That a system is deterministic means that its future behaviour is fully determined by its initial conditions,
with no random elements involved.

23

3.1. Weather Forecasting Chapter 3. Forecasting in Physics

3.1.1 Crucial Differences

With the above discussion of the chaotic nature of the atmosphere and the resulting implica-
tions, we are reaching one of the crucial differences between weather forecasting and financial
forecasting.

The atmosphere, and thus the weather, evolves according to the laws of physics—regardless
of our observations and predictions. It has got its life, so to speak. Its chaotic nature has two
important implications: (i) it is deterministic (non-random), and (ii) it is highly sensitive to
initial conditions. The second point means that the accuracy and usability of our predictions
depend solely on the numerical precision we are able to obtain. That is, the limitations of our
forecasts are due to the limitations in our technology. Consequently, technological improvements
will provide us with better tools to observe nature, and thus enable us to more accurately predict
its future state.

Turning to the financial markets, one may raise the question whether these are chaotic or
random. If they are chaotic, then the same must apply as for the atmosphere; namely that the
markets are fully determined by the initial conditions and that any limitations in forecasts are
entirely due to slight errors in these conditions. Intuitively, this case sounds rather implausible.
On the other side, of course, one may argue that the right initial conditions are just extremely
complex and entirely or partly unknown to us. The question also arises of what exactly the
initial conditions are. A plausible candidate would be the history of the markets, i.e. all past
prices and other financial data. This is what we do in this thesis; using past and current data to
predict the future. Naturally, for reasons of availability and computing power, we are only able
to use so much data. Poor results may therefore be attributed to either unpredictable markets
or, from the point of view of firm believers in chaotic markets, insufficient data. In the latter
case, one may argue that the reason for poor results is too little data, and that the future state
of the markets is still governed by all the available past data. The discussion of chaotic versus
random markets is extremely interesting, and both has been, and still is, the subject of much
debate and research. As mentioned in Section 2.1, people are largely split in two camps: (i)
those who cling to one of the versions of the Efficient Market Hypothesis and thus believe in
unpredictable, random markets; and (ii) those who reject the Efficient Market Hypothesis. We
note that the latter point is not necessarily synonymous with believing in chaotic markets; there
have been numerous attempts—not related to chaos theory—at predicting the markets (see e.g.
our overview in Section 1.3). The attempts show greatly varying degrees of success, which is
why the “war” rages on. In any case, though, some researchers have in fact found interesting
empirical evidence that points to some degree of chaos [53], [54], [55].

A related interesting discussion of weather forecasting versus financial forecasting deals with
the influence of our observations and predictions. As briefly mentioned above, the evolution of
the atmosphere is governed by the laws of physics. The future states are wholly uninfluenced by
what we observe and predict. The financial markets, on the other hand, are very much influenced
by the predictions, especially if the predictions are made public or if multiple agents, traders,
and investors employ the same systems and algorithms. For example, banks and investment
companies, and even independent specialists or professionals, all provide an abundance of “stock
picks” and recommendations that many private investors follow. Also, if multiple traders act on
the same signals7, then the stock often ends up going in the indicated direction if enough money
is involved. Thus, stock predictions are to some extent self-fulfilling. This makes a big impact on
the correctness of the predictions and for their value and usability; i.e. if there is enough belief
in something, then that something is likely to happen. For example, if all the investment banks

7The signals often come from the interpretation of one or more technical indicators, which we cover in Appendix
A.

24

3.2. Forecasting in Other Areas of Physics Chapter 3. Forecasting in Physics

want the markets to rise further, and send out positive recommendations, then the markets are
likely to rise. Similarly, if everyone sees good, prosperous times ahead, then those times may
come ... for a while at least... Because in these cases we may observe what is called a financial
“bubble”. And eventually this bubble will burst, with a market crash to follow—just as we saw
it with the “dot-com” bubble around the turn of the millennium and the recent financial crisis
in 2008. The self-fulfilling nature of stock predictions is a little bit like observing a quantum
system; the observation itself fixes the quantum system.

3.2 Prediction and Forecasting in Other Areas of Physics

Other areas, in physics and related sub-disciplines such as e.g. geophysics, where forecasting
is relevant and important include sunspot activity, climate change, and natural disasters (e.g.
volcano eruptions and earthquakes), etc. We describe these points below and discuss similarities
and differences to financial forecasting and its prediction methods.8

Sunspot Activity

Caused by intense magnetic activity, sunspots are temporary phenomena on the photosphere9 of
the Sun. They form areas of reduced surface temperature compared to the surrounding material
and thus appear as dark spots. Moreover, they usually come in pairs, with each sunspot having
the opposite magnetic pole to the other. Sunspots are wild and violent phenomena that can be
thought of as self-perpetuating storms, analogous in some ways to terrestrial hurricanes.

Sunspot activity has been found to come in cycles with a period of roughly 11 years [56]. We
can quickly investigate this ourselves. We have found yearly sunspot activity data for the past
∼ 300 years, ranging all the way back to 1700.10 In Fig. 3.1 we plot the a quantity called the
Zürich sunspot relative number, which measures both number and size of sunspots.

8For the sake of brevity and the limited scope of this thesis, we will not go into as much detail on these matters
as we did with weather forecasting.

9The depth of a star’s outer shell from which light is radiated.
10The dataset only contained data up to 1989. However, the important features—i.e. the cyclical nature—is

still more than evident.

25

3.2. Forecasting in Other Areas of Physics Chapter 3. Forecasting in Physics

1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

140

160

180

200

Year

R
el

at
iv

e
N

um
be

r

Sunspot Data

1930 1940 1950 1960 1970 1980 1990
0

20

40

60

80

100

120

140

160

180

200

Year

R
el

at
iv

e
N

um
be

r

Sunspot Data

Figure 3.1: Observed sunspot activity. The vertical axis is the Zürich sunspot relative number,
which measures both sunspot number and size. Left: the full period from 1700 to 1989. Right:
zoom-in on the most recent 55 years.

We observe a clear indication of the cyclic nature of sunspot activity. In addition, looking at
e.g. the peaks—the so-called sunspot maxima—we note that the period seems to be roughly the
aforementioned 11 years.

Due to its effect on weather (in space and on Earth) and climate, it is a relevant and important
task to attempt to predict the future sunspot activity. There are various approaches to this task,
and the prediction methods generally form three main groups: [57]

• Precursor methods, which rely on the value of some measure of solar activity or mag-
netism at a specified time to predict the amplitude of the following solar maximum (the
peak). For an example of prediction using these methods, see e.g. [58].

• Extrapolation methods, which apply time series methods for analysis and forecasting.
For an example, see e.g. [59].

• Model-based methods, which, instead of an analysis of observational data alone, use
dynamo models to predict solar activity. [60] provides a practical research example.

[57] states that, in their overall performance during the course of the last few solar cycles, pre-
cursor methods have been superior to extrapolation methods. In addition, model-based forecasts
from the last group have not yet had a chance to prove their skills.

The first two groups of methods are particularly interesting in a comparison to financial
forecasting and our approach to it in this thesis.

The second bullet describes the extrapolation methods for sunspot prediction which employ
time series models such as ARMA, ARIMA, etc. that model the conditional mean based on past
observations. Such time series models are also very commonly used for analysis and forecasting in
finance, and we also both review their theory (Chapter 4) and test their performance (Chapter
6) in this thesis. In particular, the use of past of observations for stock market prediction is
interesting and plausible due to the autocorrelation observed in asset returns—something we
also find empirical evidence for here.

Then there are the precursor methods for sunspot activity prediction which use some measures
of solar activity or magnetism to predict future solar maxima. Thus, the methods generally use as

26

3.2. Forecasting in Other Areas of Physics Chapter 3. Forecasting in Physics

predictor variables one or more indicators. This is very similar to several approaches to financial
forecasting (technical and fundamental alike), where one also employs a variety of indicators
that may or may not possess predictive power. In regards to sunspot activity, the indicators
are, as mentioned, related to solar activity or magnetism. In finance, the indicators may be of a
technical nature, e.g. moving averages, momentum, volume, etc., or a fundamental nature, e.g.
company accounts, budgets, etc.11 There are several ways in which one can use these indicators
for prediction, both in the case of sunspot activity and stock markets. One approach is to
use statistical machine learning methods. This is what we do here (in addition to time series
models); we use Artificial Neural Networks, Support Vector Machines, and Random Forests12

for predicting future stock prices using both past prices and a wide array of different technical
indicators. Such methods have also been widely put to use—and successfully so—for predicting
sunspot activity; see e.g. [61], [62], [63], [64].

As briefly mentioned earlier, sunspot activity, and solar variation in general, causes changes
in space weather and the weather on Earth. It thus shares a close connection to our previous
section on weather forecasting. Sunspot activity also affects the climate on Earth, which has
been a topic of hot debate especially in the recent decade. This leads us to the following section
where we discuss climate change forecasting and compare it to financial forecasting.

Climate Change

Whereas the notion of weather and changes herein are often related to the temperature, pre-
cipitation, wind, etc. for periods ranging from one day to one week, the climate of the Earth
deals with significantly longer periods. The term climate change denotes a significant and last-
ing change in the weather patterns over periods ranging from decades to millions of years. The
change may be related to the average weather conditions (e.g. colder or warmer weather in
general) or to variability of weather around the average conditions (e.g. more or fewer extreme
events). As mentioned earlier in Section 3.1, the weather is governed by the state of the fluid,
chaotic atmosphere. Changes in the climate, on the other hand, are caused by factors such as
variations in solar radiation received by Earth (influenced by sunspot activity as described in
the previous part), plate tectonics, and volcano eruptions (the latter two of which are covered in
the next part). Certain human activities have also been identified as significant causes of recent
climate change [65]—something which is often referred to as global warming and has been a hot
(no pun intended) topic of debate in the recent decade.

Especially in recent years13, few scientific topics evoke such general interest and public dis-
cussion as climate change [66]. It is a subject that has been highly politicized. New results
enter the environmental debate as evidence supporting a particular position. And usually, the
background and perspective needed to understand the result have been stripped away in order to
form an appropriate sound bite for the public to digest and the media to relay and exaggerate.
Political motivations aside, however, the attention is still understandable given the importance
of climate to agriculture and energy use. The fear of global warming and the greenhouse effect14

11We describe and discuss technical and fundamental analysis in Chapter 2, and review a variety of technical
indicators in Appendix A.

12See Chapter 5 for a review of the theory.
13Although, at the time of writing this, the trend—especially in the media—seems to be waning as compared

to e.g. 5 years ago. Still, however, we observe in present day a focus on being “green” and eco-friendly unlike
never before. So, perhaps the trend has changed from wide media attention to governments and people being
more aware and taking the necessary steps to reduce pollution and carbon dioxide emission.

14The process by which thermal radiation from e.g. Earth’s surface is absorbed by the greenhouse gasses
in the atmosphere and partly re-radiated back to towards the surface, with an increase in the average surface
temperature to follow.

27

3.2. Forecasting in Other Areas of Physics Chapter 3. Forecasting in Physics

has been used as justification for reducing the use of fossil fuels and instead focusing on more
“green”, eco-friendly alternatives.

Evidently, via its potentially destructive effects on human kind and our continued existence
on Earth—e.g. the serious event of the poles melting, or, to take the opposite extreme, a new ice
age—climate plays an extremely vital role to us humans, and hence to the political discussion.
Regarding the prediction of climate change, there is thus a strong politically inspired tendency
towards overinterpretation and/or subjective interpretation. Consequently, the predictions may
vary significantly over time, depending on the dominant belief. For example, if there is strong
focus on e.g. global warming and human-caused climate changes—something which the media
is certain to relay to the public—then governments and other institutions—if holding the same
belief—may even go so far as to funnel their grants and financial support to researchers who
investigate and find support for this very aspect. There is also a clear connection to business
and the industry; for instance, energy companies making use of fossil fuels certainly try their
best to dampen the focus on global warming and show that this is not what is causing climate
changes. Similarly, companies dealing with “green”, eco-friendly energy alternatives clearly have
incentive to push in the opposite direction. Here, money and power enter the picture, and as we
have seen throughout history, these can be extremely strong sources of motivation.

Money, power, and politics is a hard-hitting trio whose constituent parts are inextricably
linked together. The existence of politically inspired motivations in climate change forecasting is
an irrevocable fact. And the same is true in finance and financial forecasting where, more than
anything, money and power are primary driving forces. Predictions and stock recommendations
may largely be influenced by underlying beliefs, hopes, and incentives. For example, banks
or investment companies may announce strong “buy” or “sell” signals for certain stocks, and
consequently publish recommendations to the public which encourage private investors to do as
suggested. The companies may have honourable intentions, but their recommendations may also
be motivated by their own wants and wishes; i.e., they may own a lot of shares in a given stock
themselves, and then recommend others to buy this stock so that the price rises and their shares
increase in value. Vice versa if they wanted a stock to drop. And there are numerous other
examples and scenarios. In this way, the agents on the markets can have a strong influence on
the actual direction of the market and what sort of predictions and recommendations are made.
This is in a very similar vein as what we discussed for climate change predictions.15

Natural Disasters and Stock Market Crashes

Between scientists from e.g. physics, geology, etc., there are interdisciplinary attempts at pre-
dicting natural disasters such as earthquakes and volcanic eruptions. The motivation is obvious
since such events can have terrible consequences for people living in the surrounding areas.

In regards to earthquakes, there was great optimism amongst scientists in the 1970s that
some method of prediction might be found; however, by the end of the 1990s, continuing failure
led many to question whether it was possible at all [67], [68]. This also appears to be the common
belief today, even though many also hold that, given enough resources, prediction might still be
possible [69].

Just as we saw it earlier with precursor methods for sunspot prediction, there has been,
and still is, a great deal of research going into earthquake precursors, i.e. phenomenons that
might give effective warning of an impending earthquake. Numerous precursor candidates have

15Of course, there is an important difference here in that climate change predictions do not cause the actual
climate to change (except through the effects that people’s environmental awareness and governments’ pollution
and emission policies have on global warming). In finance, predictions may (or may not) dictate the actual
future evolution. However, the similarity still holds that the forecasts themselves are often strongly motivated by
political and financial incentives.

28

3.2. Forecasting in Other Areas of Physics Chapter 3. Forecasting in Physics

been suggested—numbering in the several hundreds or even thousands [67]—but the search
has still thus far been unsuccessful [70]. Some precursors that have been studied include e.g.
animal behaviour, changes in the velocities of rock formations, radon emissions, electro-magnetic
variations, etc. But none of these phenomena have been consistently or convincingly successful
[70].

With all the research in the field and the mostly disappointing results, there is no doubt
that earthquake prediction is extremely difficult. This difficulty may be the reason that the vast
majority of attempts have failed so far. The other option is that earthquake prediction is entirely
impossible—a belief that is strongly disputed [71], but still has yet to be concretely disproved
[70].

This great difficulty in prediction is also what we observe in finance and the stock market;
no attempt has been able to consistently predict the markets. No attempt that we know of, at
least, since it is probably unlikely that people would share such “money machine” with others,
consequently rendering it useless if many began to use it. This marks an important difference
to earthquakes, and natural disasters in general, where correct predictions are beneficial for all
and in everyone’s interest (greed-fueled motivations are almost non-existing).

Another crucial difference between the prediction of natural disasters and financial markets
is the very nature of what is being predicted and hence the possibility hereof. Earthquakes,
volcanic eruptions, and other such disasters are natural phenomena. They are all related to how
our physical world is put together, to the physical laws describing it. They are not something
we humans have created. The financial markets, on the other hand, are a human construct. It
may be affected by natural phenomena—disasters, wars, etc.16—but is to a much greater extent
driven by human psychology. Thus, although fiendishly difficult to predict as it stands right now,
earthquakes, volcanic eruptions, etc. may turn out to be predictable due to them being natural,
physical phenomena. Financial markets, as something created—and very much affected—by
humans, seem more likely to be something that is actually unpredictable.

Lastly, we remark that there is an interesting comparison between natural disasters (earth-
quakes, etc.) and “disasters” on the stock market (crashes). In this regard there are actually
examples of scientists in e.g. geophysics that attempt to predict stock market crashes. For
example, inspired by the swings and quakes of natural systems, [72], [73] employs a logarithmic-
periodic power-law model for describing the characteristic behaviour of a speculative bubble and
predicting its subsequent crash. Mathematically, the log-periodic power-law proposes that the
price p of an instrument (stock, index, etc.) evolves at time t according to

p(t) = A+B (tc − t)z + C (tc − t)z cos (ω log (tc − t) + Φ) , (3.1)

where tc is the most probable time of crash, z is exponential growth, ω is oscillation amplitude,
and A,B,C,Φ are constants. The power-law part describes the price increases (characteristic
for bubbles), while the log-periodic part governs the fact that the oscillations become faster and
faster (shorter period) and exhibit smaller and smaller amplitude up until the time at which the
bubble bursts.

It is beyond the scope of this thesis to go into further detail on this matter. But the literature
is rich with examples; see e.g. [74], [75], [76], [77], [78]. Investigating if and how stock market
crashes can be predicted using such log-periodic power laws and/or other models inspired by e.g.
physics is a very interesting topic of research—and a top candidate for our future work.

16For a current example, take e.g. the situation in Russia and Ukraine which has caused the western world to
limit or completely shut connections with Russia, consequently causing Russian-related stocks to plummet.

29

3.3. PDEs in Physics and Finance Chapter 3. Forecasting in Physics

3.3 PDEs in Physics and Finance

Above, we considered several aspects related to physics where prediction and forecasting was both
relevant and important. In a comparison of these to financial forecasting we discussed several
similarities crucial differences. We now make a slight turn back to partial differential equations
(discussed in regards to weather forecasting in Section 3.1) and some of the similarities and
shared methodologies in physics and finance.

Finance and physics have many things in common and apply many of the same mathemat-
ical methods and models. Earlier, we described how weather forecasting is performed via the
numerical solution of a set of partial differential equations. Indeed, PDEs and their numerical
solution methods are also used extensively in finance. For example, the price of an option17 is,
under several assumptions, governed by the Black-Scholes PDE18

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (3.2)

where V is the option price (a function of time and the price S of the underlying stock), sigma
is the volatility (standard deviation) of the stock’s returns, and r is the risk-free interest rate.

As it happens, through a change of variables, this PDE can be transformed to

∂u

∂t
= C

∂2u

∂x2
(3.3)

But this is just the one-dimensional heat equation from physics! With suitable initial and
boundary conditions, this governs the distribution of heat (temperature) in a bar.

In the simple case of European options, the Black-Scholes PDE can be solved analytically.
However, for more advanced options, e.g. American options and so-called “exotic” options such
as Asian options, analytical solutions no longer exist and one must turn to numerical methods.
A popular choice in this regard is Finite-Difference Methods—just as it is for solving the PDEs
occurring in weather forecasting (as described in earlier in Section 3.1) and numerous other fields.

Inspired by the differential equation approach in weather forecasting (and countless other
fields in physics for that matter) we will try to build a somewhat similar framework for financial
forecasting. The governing equations will not be of the heat equation type (or more generally
so-called parabolic PDEs) encountered in option pricing, nor any other type of partial differential
equations. Rather, we will focus on ordinary differential equations, with a specific inspiration
drawn from oscillatory systems. We describe our model in detail in the following section.

3.4 Oscillator Model for Financial Forecasting

Motivated by differential equation frameworks in numerous fields, and drawing inspiration from
[84], we will attempt to build our own model for the price fluctuations of a financial asset. As
with any model, we will be considering a simplification of reality, with one or more accompanying
assumptions. These assumptions are actually quite plausible, and we motivate them as follows.

Countless agents trade on the financial markets; private investors, professional analysts and
traders, etc. No matter their background, they share a common goal; they want to make money.

17In finance, an option is a contract which gives the buyer the right, but not the obligation, to buy sell an
underlying asset at a specified price on or before a specified date. The seller has the obligation to fulfil the
transaction. If the buyer has the right to buy (sell) something, the option is called a call (put) option. If the
owner is restricted to exercising his right or not at the expiry date, it is a European option. If exercise is allowed
on or before expiry, it is an American option.

18Derived by Fischer Black and Myron Scholes in their seminal paper from 1973 [48].

30

3.4. Oscillator Model for Financial Forecasting Chapter 3. Forecasting in Physics

And making money on the financial markets requires timing, making the right decisions19, and
managing one’s risk. To put it in a simple—but nonetheless true—way, this can be boiled down
to buying when the price is low and selling when the price is high. As human beings, driven
to a large extent by emotions, it is only natural to want to lock in a profit at some point, to
ensure we get our hands on that glittering gold. Both private investors, professional traders, and
automated trading systems will eventually lock in a profit if it is present. So, if we own shares in
a stock that has risen, we probably want to sell those shares at some point when we—based on
emotions, intuition, historical patterns, or complex trading strategies—deem the stock to have
risen enough. It is very common for many agents to do this—if not at once, then within some
limited time frame—and we may observe a sort of herd-like behaviour where people suddenly
begin to hurry away from the stock, selling it. When the majority acts the same, the stock
follows accordingly; thus, when investors sell to lock in gains, it is common for the stock price to
decrease. A similar thing occurs in the other end of the spectrum when the stock price is low;
here, investors eye an opportunity to buy at bargain prices (in order to later sell and hopefully
profit). If the herd agrees on this—that the price is sufficiently low and will probably rise back
up soon—their buying the stock will often cause the price to increase.

Now, the question remains of when to buy and sell. That is, how much should the price
increase before the herd acts and sells to lock in gains. Similarly, how much should the price
decrease for investors to act on the opportunity of buying at bargain prices? Knowing this
amount (which probably varies) is certainly craved by many—if it even exists. However, in our
simplified model of the real world, we will assume that it does; and we will denote the base
“magic” price level by p∗. The price at time t is denoted p(t).

This investment logic and behaviour motivates the following two assumptions:

• As the stock price p(t) increases above p∗, investors SELL and the slope of the price
decreases at a rate proportional to p(t)− p∗.

• As the stock price p(t) decreases below p∗, investors BUY and the slope of the price
increases at a rate proportional to p(t)− p∗.

Note that we are dealing with slopes and rates of change, the introduction of which will
become evident shortly. The slope of the price between the consecutive times t− 1 and t is just

p(t)− p(t− 1)

t− (t− 1)
=
p(t)− p(t− 1)

1
= p(t)− p(t− 1). (3.4)

This slope, or rate of change, of the price is the financial pendant to the physical notion of
velocity, i.e. the rate of change of position. Now, the change in slope is then

[p(t+ 1)− p(t)]− [p(t)− p(t− 1)] , (3.5)

which can be understood as the acceleration of price.
The assumptions in 3.4 then imply that this change in slope is proportional to p(t)− p∗, i.e.

[p(t+ 1)− p(t)]− [p(t)− p(t− 1)] = −ω2 [p(t)− p∗] , (3.6)

where ω2 is some constant of proportionality, and the minus sign ensures that the slope decreases
(increases) for p(t) above (below) p∗, in accordance with the assumptions.

We can rearrange terms in Eq. (3.6) to obtain

p(t+ 1) =
(
2− ω2

)
p(t)− p(t− 1) + ω2p∗ (3.7)

19Whatever those decisions may be.

31

3.4. Oscillator Model for Financial Forecasting Chapter 3. Forecasting in Physics

Thus, if we find ourselves at time t, this expression gives a prediction of the next stock price
p(t+ 1) in terms of the current price p(t) and previous price p(t− 1).

Now, Eq. (3.6) is evidently a difference equation. If we go to the limit of infinitesimal time
steps, we can rewrite it as a second order differential equation:

d2p

dt2
= −ω2 [p(t)− p∗] (3.8)

An expression like this is a well-known phenomenon in physics. Indeed, if p∗ is a constant,
the solutions p(t) will oscillate sinusoidally about p∗ with a period T = 2π/ω (where we identify
ω as the angular frequency). Hence, ω = 2π/T and we can rewrite Eq. (3.7) as

p(t+ 1) =
(

2− (2π/T)
2
)
p(t)− p(t− 1) + (2π/T)

2
p∗ (3.9)

Here, T should be chosen to be some proper value. A crude way would be to just pick a
somewhat sensible value. Another approach is to estimate it using past data in a similar way
as one does for e.g. neural networks, etc.; that is by finding the value that yields the best
performance (lowest error) on some training set.

The question remains, however, of how to choose the price p∗. To begin with, one may try the
average price of the stock over the past n days, i.e. an n-period simple moving average (SMA),
or, more advanced, an exponential moving average (EMA). Another option which includes the
volume of traded assets is the volume-weighted moving average (VMA).

It should also be clear what the price p(t) is. The obvious choice is the closing price of the
asset. Other options include the average of the high and the low, p(t) = (phigh + plow)/2 or
the typical price p(t) = (phigh + pclose + plow)/3. Yet another option—and perhaps the best
one—is a short-period moving average which smooths the data, removing the noise and erratic
behaviour that is especially pronounced for daily data. It is important that the period is not too
large so as to maintain a close similarity to the unsmoothed prices. Depending on the purpose
and application, a good choice is n = 5, which, for daily data, is the average price for the past
trading week. Note that, when using a moving average for p(t), the price p∗ (itself a moving
average of p(t)) becomes a moving average of a moving average. Like the period T , the best
moving average periods may be found by searching parameter space for the combination yielding
the best performance on some training set.

The formula in Eq. (3.9) provides a prediction of the next period’s price. But the model also
allows for multi-step ahead forecasting if we, at some point in time, stop using the actual prices
p(t) and p(t− 1) and start using the previously predicted prices instead.

3.4.1 Extending the Model to Nonlinear Form

As it is now, the model in Eq. (3.6) or (3.8) governs a linear system. We can introduce nonlin-
earity by assuming that the rate of change of p(t)− p(t− 1), or d2p/dt2 in differential form—i.e.
the acceleration of price—satisfies

d2p

dt2
= −β [p(t)− p∗] + α [p(t)− p∗]3 , (3.10)

where β, α > 0 (β corresponds to ω2 used in the above).
Right now, the acceleration of price, d2p/dt2, depends solely on the deviation p(t)− p∗. We

can make things more interesting by adding a term governing how quickly the price changes, i.e.
the velocity dp/dt (or p(t) − p(t − 1) in difference form). The term should have the following
effect:

32

3.4. Oscillator Model for Financial Forecasting Chapter 3. Forecasting in Physics

• When p(t) > p∗ and the price increases, i.e. p(t) − p(t − 1) > 0, then the price level p∗

attracts the price. When the price then begins to decrease, i.e. p(t) − p(t − 1) < 0, then
the attraction wears off.

• When p(t) < p∗ and the price decreases, i.e. p(t) − p(t − 1) < 0, then the price level p∗

attracts the price. When the price then begins to increase, i.e. p(t) − p(t − 1) > 0, then
the attraction wears off.

The intuition and reasoning behind this is as follows. First, our previous assumptions al-
ready state that the price p(t) seeks back to the base level p∗ (like a spring seeking back to its
equilibrium). When the price is above this level, and is headed further up with positive veloc-
ity (increasing price), then the pull towards equilibrium strengthens, i.e. there is a negative,
downwards acceleration. When the price then begins to decrease, but is still above p∗, the pull
weakens. Vice versa when the price is below p∗.

Hence, a positive (negative) velocity term, dp/dt or p(t) − p(t − 1), should give a negative
(positive) contribution to the acceleration. In difference and differential form, respectively, our
model thus becomes

[p(t+ 1)− p(t)]− [p(t)− p(t− 1)] = −β [p(t)− p∗] + α [p(t)− p∗]3 − δ [p(t)− p(t− 1)] , (3.11)

d2p

dt2
= −β [p(t)− p∗] + α [p(t)− p∗]3 − δ dp

dt
, (3.12)

where β, α, γ > 0.
The similarity to a well-known complex, dynamical system in physics may began to appear.

Indeed, if we let x(t) = p(t)− p∗ and rearrange, then we obtain

d2x

dt2
+ δ

dx

dt
+ βx− αx3 = 0, (3.13)

which is the unforced Duffing oscillator!
Now, our current model only includes the current and past prices as well as the base price

level. Indeed, the unforced Duffing oscillator is an autonomous system that disregards outside
influences. But there are clearly other variables which affect the stock price; e.g. seasonal
variations, periodic changes in interest rates, etc. These outside influences can be added via a
periodic term:20

d2x

dt2
+ δ

dx

dt
+ βx− αx3 = Acos(ωt), (3.14)

which is, of course, the forced Duffing oscillator!
The Duffing equation is a nonlinear second order differential equation used to model certain

damped and driven oscillations. With the above notation we obtain the special case of simple
harmonic motion when δ, α = 0. Similarly, if the nonlinear term is α = 0, then the equation
describes a damped and driven simple harmonic oscillator. In the forced case, A 6= 0, the
system can even exhibit chaotic behaviour. The many parameter combinations and possibilities
makes the Duffing oscillator an interesting system to study. Our main use for it is as a basis
for our oscillator-inspired model for stock prices, and we refer to the rich literature for further
descriptions and detailed analyses; e.g. [79], [80], [81], [82], [83].

20The ω appearing in the periodic term on the right-hand side of Eq. (3.14) should be distinguished from the
ω used previously.

33

3.4. Oscillator Model for Financial Forecasting Chapter 3. Forecasting in Physics

Now, (3.14) is a second order equation. In order to solve it, we first let dx/dt = y and write
it as a set of coupled first order equations:

dx

dt
= y (3.15)

dy

dt
= −δy − βx+ αx3 +Acos(ωt) (3.16)

(3.17)

The problem can now be solved numerically using e.g. the popular fourth order Runge-Kutta
(RK4) method21.

Due to the time and size limitations of this study we will not make practical applications of
the Duffing-version of the oscillator model, but rather focus on the slightly simpler case. However,
the use of the Duffing equation for modelling stock price fluctuations is a topic for future work.

21For more information on numerical methods for differential equations in general, and Runge-Kutta methods
in particular, we refer to e.g. [4],[5].

34

Chapter 4

Traditional Time Series Analysis

This chapter introduces several techniques that are useful for analysing time series data; i.e. data
where successive values represent consecutive measurements or observations made at certain time
intervals. As the financial markets evolve in time—due to their inherent dependence on changes in
worldwide and country-specific economic and political factors, in the performances of individual
companies, and in the behaviour and psychology of individual investors, etc.—the data that can
be extracted from these markets (e.g. prices, volumes, company earnings, etc.) are inherently of
a time series nature. There is a vast amount of various time series methods, each with a large
number of different variations and extensions. Covering all of this theory is beyond the scope of
this thesis1, and we shall only consider those methods applied in our analyses and experiments
for the purpose of financial forecasting.

We begin by covering some basic concepts of time series analysis that will be used and referred
to in the later sections. We then proceed by treating a variety of conditional mean models,
beginning with the simple autoregressive (AR) model and moving-average (MA) model. These
models will not themselves be used in practice in this study, but their theoretical foundations
are used to entertain the combined autoregressive moving-average (ARMA) model, which will
be applied in practice. ARMA models are then generalized and extended to include so-called
unit roots (ARIMA models) and external/exogenous covariates (ARMAX models). All of these
models are used to model the conditional mean of the time series. However, since volatility plays
an important role in finance, we are also interested in the variance of the time series. For this
reason, we cover an array of conditional variance models, including the autoregressive conditional
heteroscedastic (ARCH) model, its generalized version (GARCH), as well as a selection of other
extensions.

4.1 Characteristics of Time Series

This section introduces some basic concepts that are essential in time series analysis.

4.1.1 Stationarity

A common assumption in many time series techniques is that the data are stationary. A sta-
tionary process has the property that the mean, variance, and autocorrelation (to be introduced
in the next subsection 4.1.2) structure do not change over time. Qualitatively, this means a flat

1For books and other detailed discussions of the plethora of time series methods, see e.g. [36], [37], [38], [39],
[40].

35

4.1. Characteristics of Time Series Chapter 4. Traditional Time Series Analysis

looking series, without trend, constant variance over time, a constant autocorrelation structure
over time, and no periodic fluctuations (i.e. so-called seasonality).

In more precise mathematical terms, we say that the a time series {rt} is strictly stationary
if the joint distribution of (rt1 , rt2 , . . . , rtk) is identical to that of (rt1+t, rt2+t, . . . , rtk+t) for all
t, where k is an arbitrary positive integer and (t1, . . . , tk) is a collection of k positive integers.
In words, strict stationarity means that the joint distribution (rt1 , rt2 , . . . , rtk) is invariant under
time shift. This is a very strong condition that is difficult to verify empirically; indeed, for
financial data, strict stationarity is a very, very poor assumption.

Therefore, a weaker version of stationarity is often assumed. A time series {rt} is said to
be weakly stationary if both the mean of rt and the covariance between rt and rt−` are time-
invariant, where ` is an arbitrary integer. Put another way, {rt} is weakly stationary if (a)
E(rt) = µ (i.e. constant) and (b) Cov (rt, rt−`) = γ` (i.e. only depends on ` and not t). To get

a visual picture of this, suppose that our observed series comprises T data points, i.e. {rt}Tt=1.
Weak stationarity then implies that the time plot of the data shows the T values fluctuating
with constant variation around a fixed level. In applications, weak stationarity enables one to
make inferences about future observations [40]—which is exactly what we will do in this study
concerning financial forecasting and prediction.

The covariance Cov (rt, rt−`) = γ` mentioned above is actually called the lag-` autocovariance
of rt (which will also show up in the following subsection). It has two important properties: γ0 =
Var(rt) and γ−` = γ`. The latter property follows from Cov

(
rt, rt−(−`)

)
= Cov

(
rt−(−`), rt

)
=

Cov (rt+`, rt) = Cov (rt1 , rt1−`), where t1 = t+ `.
It is common in the finance literature to assume that an asset return series is weakly station-

ary. Granted that a sufficiently large amount of historical data is available—which is very often
the case (except for data quoted over very long time periods, e.g. yearly data)—this assumption
can be checked by visual inspection or empirically by dividing the data into subsamples and
checking the consistency of the results across the different subsamples.

Now, if the time series is not stationary—which would be the case for a series of stock
prices {pt}—it can often be transformed to stationarity via one of the following techniques: (i)
differencing the original data to create a new series with elements di = pi − pi−1; (ii) fitting a
curve to the data (in the presence of a trend) and then modelling the residuals from that fit; (iii)
taking the logarithm or square root of the series may stabilize the variance (for non-constant
variance). These techniques are intended to generate series with constant location and scale. In
this case of financial markets, the immediate, raw data has the form of a series of prices {pt},
which is clearly not stationary. The series will be transformed for several reasons, a key one
of which is stationarity. The transformation is a sort of differencing as mentioned here, but it
is more advanced than the simple differencing in technique (i) above. More specifically, as has
been elaborated upon earlier and will be used later on, we will mainly make use of so-called
logarithmic returns, thus essentially applying both a more advanced version of technique (i) and
technique (iii).

4.1.2 Correlation and Autocorrelation

Autocorrelation (or serial correlation) is a very interesting and important aspect of time series
analysis—and, indeed, for our case of financial forecasting. Before turning to autocorrelation,
however, we briefly recount on the usual concept of correlation.

The correlation coefficient ρx,y between two random variables X and Y is defined as

ρx,y =
Cov(X,Y)√
V ar(X)V ar(Y)

=
E [(X − µx)(Y − µy)]

E [X − µx]
2
E [Y − µy]

2 , (4.1)

36

4.1. Characteristics of Time Series Chapter 4. Traditional Time Series Analysis

where µx and µy are the means of X and Y , respectively, and E [] denotes the expected value.
The correlation coefficient measures the strength of linear dependence between X and Y , and
satisfies −1 ≤ ρx,y ≤ 1 and ρx,y = ρy, x.

Now, in regards to the financial markets, only a finite amount of data is available. We might
not even consider all of the available data, but rather select a time frame of a certain length
(depending on the frequency of the data and the time horizon of the predictions). This means

that we will be considering a sample. Letting this be given by {(xt, yt)}Tt=1, i.e. T observations
of the data (x, y), the correlation can be consistently estimated by the sample correlation

ρ̂x,y =

T∑
t=1

(xt − x̄) (yt − ȳ)√
T∑
t=1

(xt − x̄)
2
T∑
t=1

(yt − ȳ)
2

, (4.2)

where x̄ =
1

T

T∑
t=1

xt and ȳ =
1

T

T∑
t=1

yt are the sample mean of X and Y , respectively.

Equipped with this knowledge, we are now ready to take on the Autocorrelation Function
(ACF). First, consider a weakly stationary time series rt. In regards to financial data, this
could be a series of the returns of an asset; e.g. the daily return of a stock. It is interesting to
investigate whether e.g. the daily return of yesterday (or one or more days further in the past)
has an influence on today’s return; that is, in general, whether there is any dependence between
rt and its past values rt−i. This is exactly where the concept of correlation is generalized to that
of autocorrelation. More specifically, the correlation coefficient between rt and rt−` is called the
lag-` autocorrelation of rt and is denoted by ρ`. It is defined by

ρ` =
Cov (rt, rt−`)√
V ar(rt)V ar(rt−`)

=
Cov (rt, rt−`)

V ar(rt)
. (4.3)

The second equality assumes that the series is weakly stationary, whereby the property
V ar(rt) = V ar(rt−`) holds.

Evidently, as follows from the definition, ρ0 = 1 (the series is, of course, fully positively
correlated with itself), ρ` = ρ−`, and −1 ≤ ρ` ≤ 1. Moreover, we say that the weakly stationary
series rt is not serially correlated if and only if ρ` = 0 ∀ ` > 0.

Again, if only a sample {rt}Tt=1 is considered, then we define the lag-` sample autocorrelation
of rt as 2

ρ̂` =

T∑
t=`+1

(rt − r̄) (rt−` − r̄)√
T∑
t=1

(rt − r̄)2
, 0 ≤ ` < T − 1, (4.4)

where r̄ =
1

T

T∑
t=1

rt is the sample mean.

As a whole, the statistics ρ̂1, ρ̂2, . . . , ρ̂T−1 are called the sample autocorrelation function
(ACF) of rt. This plays an important role in linear time series analysis. In this study, we

2For finite samples, the sample autocorrelation ρ̂` is a biased estimator of the true autocorrelation ρ`, with the
bias being of the order 1/T . [40] This can be significant if T is small. However, financial datasets are generally
more than sufficiently large (except, perhaps, if one chooses to consider data quoted on e.g. a yearly basis), and
so the bias will be insignificant for our purposes.

37

4.1. Characteristics of Time Series Chapter 4. Traditional Time Series Analysis

will apply it in both the usual way of analysing a given time series, but also for selecting which
lagged data might be most relevant as inputs in the methods.

Significance Tests of Autocorrelation

Having calculated, say, the sample autocorrelation ρ̂` of some time series, we are interested in
whether the results are statistically significant. The autocorrelation can be tested both individ-
ually and jointly.

Testing Individual ACF:
The lag-` autocorrelation ρ` of the series {rt} can be tested individually for a given positive
integer `.[40] The null hypothesis is H0 : ρ` = 0, and the alternative hypothesis is Ha :
ρ` 6= 0. The test statistic is

t =
ρ̂`√

1+2
`−1∑
i=1

ρ̂2i

T

. (4.5)

If {rt} is a stationary Gaussian series satisfying ρj = 0 for j < `, the test statistic t is
asymptotically distributed as a standard normal random variable. Hence, the decision rule
of the test is to reject the null hypothesis H0 if |t| > Zα/2, where Zα/2 is the 100 (1− α/2)th
percentile of the standard normal distribution. α is the significance level of the test and is
often taken as 0.05 = 5%.

When the sample size T is finite, ρ̂` is a biased estimator of ρ`. The bias is of the order
of 1/T , which can be significant for small T . However, in our case of financial data, the
samples will generally be sufficiently large to diminish the effect of the bias.3

Box-Pierce Test:
It is often slow and inadequate to test multiple autocorrelations individually, especially
for some financial applications. Instead, one can test jointly that several autocorrelations
of rt are zero. More specifically, the null hypothesis H0 : ρ1 = · · · = ρm = 0 (that
the first m autocorrelations are zero) is tested against the alternative Ha : ρi 6= 0 for
some i ∈ {1, . . . ,m}. Proposed by Box and Pierce [41], the test statistic is the so-called
Portmanteau statistic

Q∗(m) = T

m∑
`=1

ρ̂2` (4.6)

Under the assumption that {rt} is an i.i.d. sequence with certain moment conditions [40],
Q∗(m) is asymptotically a χ2 random variable with m degrees of freedom.

Ljung-Box Q-test:
Ljung and Box [42] modify the above test statistic as follows to increase the power of the
test in finite samples:

Q(m) = T (T + 2)

m∑
`=1

ρ̂2`
T − `

. (4.7)

3Of course, if one considered low-frequency data such as monthly prices for a company that is relatively new
on the markets, then the sample size will be rather small, with only 12 observations per year.

38

4.2. Autoregressive (AR) Models Chapter 4. Traditional Time Series Analysis

The null hypothesis H0 is rejected if Q(m) > χ2
α, where χ2

α denotes the 100(1 − α)th
percentile of a χ2 distribution with m degrees of freedom. The p-value of the statistic
Q(m) is often calculated, in which case H0 is rejected if p ≤ α, where α is the significance
level.

Evidently, the test statistic depends on the number of autocorrelations m, and in practice
the selection of m may affect the performance of Q(m). Simulation studies suggest that
the choice m ≈ lnT provides better power performance [40]. However, the test is often
performed for several values for m, which is also what we have done in the later analysis.

We will mainly make use of the Ljung-Box Q-test for testing the autocorrelation significance
in our time series datasets.

4.1.3 White Noise

A term that appears in the time series models treated in the next sections is white noise. A
time series rt is called white noise if {rt} is a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean and variance. In the special case where rt is normally
distributed with zero mean and variance σ2, the series is said to be a Gaussian white noise.
Now, for a white noise series, all the ACFs are zero; i.e. there are no autocorrelations. This is,
of course, the ideal, theoretical case. In practice, if all sample ACFs are close to zero (or more
specifically within their two standard error limits, indicating no significant deviation from zero
at the 5% level), then the series is deemed a white noise series.

4.2 Autoregressive (AR) Models

Before diving into the general case of autoregressive (AR) models we motivate the theory with
a little example. Let rt denote the return (be it daily, weekly, monthly, etc.) series for some
stock, index, or other financial asset. Moreover, assume that there is a statistically significant
lag-1 autocorrelation. This indicates that the lagged return rt−1 might be useful for predicting
rt. A simple model making use of such predictive power is

rt = φ0 + φ1rt−1 + at, (4.8)

where {at} is a white noise series with mean zero and variance σ2
a. This model is strikingly

similar in form to the classic simple linear regression model where a dependent variable (here
rt) is related to independent, or explanatory, variables (here rt−1), plus an error term (here at).
In regression jargon, we say that rt is “regressed” on rt−1. In this particular case, however, the
variable rt is regressed on a previous value of itself; hence, the model is called autoregressive.
More specifically, the above model in (4.8) is called an autoregressive (AR) model of order 1, or
simply an AR(1) model.

This simple AR(1) model implies that, given the past return rt−1, the return rt is not cor-
related with observations prior to t − 1. In more mathematically rigorous terms, we have,
conditional on the past return rt−1,

E (rt|rt−1) = φ0 + φ1rt−1, (4.9)

Var (rt|rt−1) = Var(at) = σ2
a. (4.10)

39

4.2. Autoregressive (AR) Models Chapter 4. Traditional Time Series Analysis

This means, given the past return rt−1, the current return rt is centered around φ0 + φ1rt−1
with standard deviation σa. Hence, we obtain the above conclusion that, conditional on rt−1, rt
is not correlated with rt−i for i > 1.4

The AR(1) model is a very simple model, and clearly there are situations in which additional
past observations are required. Thus, the AR(1) model can readily be generalized to the AR(p)
model:

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + at, (4.11)

where p is a non-negative integer and {at} a white noise series as before. This model says that
the past p values rt−i, i = 1, . . . , p jointly determine the conditional expectation E (rt| {rt−i}pi=1)
of rt given the past data.

A thorough treatment of some basic properties of AR models is given in [40], [37]. The
conclusions for the general AR(p) model are as follows. The mean of a stationary series is

E(rt) =
φ0

1− φ1 − · · · − φp
, (4.12)

where it is assumed that the denominator is not zero. The associated polynomial equation of
the model is

1− φ1x− φ2x2 − · · · − φpxp = 0. (4.13)

This is referred to as the characteristic equation of the model. If all the solutions to this equa-
tion are greater than one in modulus, then the series rt is stationary. The inverses of the solutions
are called the characteristic roots of the model. Thus, stationarity requires that all characteristic
roots are less than one in modulus. For a stationary AR(p) series, the autocorrelation function
(ACF) ρ` satisfies the difference equation(

1− φ1B − φ2B2 − · · · − φpBp
)
ρ` = 0, for ` > 0. (4.14)

Here, we have introduced the backward shift operator B, which shifts the time index by one
into the past. It is defined by Brt = rt−1, and hence Bprt = rt−p. In this regard, the inverse
operation is performed by the forward shift operator F = B−1 given by Frt = rt+1, and hence
F prt = rt+p. A plot of the ACF of a stationary AR(p) model would show a mixture of damping
sine and cosine patterns and exponential decays depending on the nature of its characteristic
roots.

4.2.1 Order Determination for AR Models

Now, the question arises of how AR models are identified and determined in practice. Say
we have a time series and want to model the conditional mean via an AR model. Which AR
model should we choose? That is, what should we use for the order p of the AR model? The
value of p is clearly unknown and must be specified empirically. This is referred to as the order
determination of AR models. There are two general approaches for determining the value of
p. The first approach is to use the so-called partial autocorrelation function (PACF), while the
second uses some information criterion function.

Partial autocorrelation function (PACF):

4For a more detailed explanation, see e.g. [40].

40

4.2. Autoregressive (AR) Models Chapter 4. Traditional Time Series Analysis

The PACF of a stationary time series is a function of its ACF and is a useful tool for
determining the order p of an AR model. Denoted φj,j , the partial lag-j autocorrelation
for a time series rt is the autocorrelation between rt and rt−j after removing any linear
dependence on r1, r2, . . . , rt−j+1. The interpretation is entertained by an example as fol-
lows. The lag-2 PACF φ2,2 shows the added contribution of rt−2 (i.e. the time series value
two steps in the past) to rt over the AR(1) model (which does not include the rt−2 term).
Similarly, the lag-3 PACF φ3,3 shows the added contribution of rt−3 to rt over the AR(2)
model. Generalizing, the interpretation is thus that the lag-j PACF φj,j shows the added
contribution of rt−j to rt over the AR(j − 1) model. Therefore, for an AR(p) model, the
lag-p sample PACF should not be zero, but φj,j should be close to zero (we say that it cuts
off) for all j > p. This property can be used to determine the order p, and it can be shown
[40] that, for an AR(p) series, the sample PACF cuts off after p lags.

Qualitative properties of the ACF and PACF for not only the AR(p) conditional mean
model but also the MA(q) and ARMA(p, q) conditional mean models (see sections 4.3 and
4.4, respectively) are given in Table 4.1.

Conditional mean model ACF PACF
AR(p) Tails off gradually Cuts off after p lags
MA(q) Cuts off after q lags Tails off gradually
ARMA(p,q) Tails off gradually Tails off gradually

Table 4.1: Qualitative properties of autocorrelation function (ACF) and partial autocorrelation
function (PACF) for the conditional mean models AR(p), MA(q), and ARMA(p, q).

In conclusion, if we want to model the conditional mean of a time series with an AR(p)
model, we can determine the order p by plotting the sample PACF of the time series and
choosing p as the lag value at which the PACF cuts off.

Information criteria:

Information criteria are likelihood-based measures of model fit that include a penalty for
complexity5. Different information criteria are distinguished by the form of the penalty,
and can prefer different models.

Let logL(θ) denote the value of the maximized loglikelihood objective function for a model
with k parameters fit to N data points. Two commonly used information criteria are:

Akaike Information Criterion (AIC): The AIC compares models from the perspective
of information entropy. The AIC for a given model is

AIC = −2 logL(θ) + 2k (4.15)

Bayesian Information Criterion (BIC): Also known as the Schwarz information cri-
terion, the BIC compares models from the perspective of decision theory, as measured
by expected loss. The BIC for a given model is

BIC = −2 logL(θ) + k log(N) (4.16)

5As we seek the most simple, parsimonious model, complexity (specifically, the number of parameters) is
penalized.

41

4.3. Moving Average (MA) Models Chapter 4. Traditional Time Series Analysis

When comparing AIC or BIC values for multiple models, smaller values of the criterion
are better.

As mentioned earlier, the criteria functions penalize model complexity. The penalty for
each parameter used is 2 for AIC and ln(N) for BIC, as evident from the right terms in
the above functions. Thus, BIC tends to select a lower AR model when the sample size N
is moderate or large.

In this case of order determination for AR models, AIC or BIC values are first computed
for a number of different models with different values of p. The order p is then chosen as
the one giving the model with the lowest AIC or BIC.6

Since the above treatment of AR models mainly serves the purpose of laying the groundwork
for the later ARMA and ARIMA models, we end the section here. For a more detailed description
and discussion of AR models, we refer to e.g. [36], [37], [38], [39], [40].

4.3 Moving Average (MA) Models

Having laid the groundwork of AR models, we now turn to another class of simple models useful
in modelling financial return series; namely, moving-average (MA) models. This class of models
can be introduced in several ways. One approach is to treat the model as a simple extension
of white noise series. In this case, however, we follow the approach in [40], where the model is
treated as an infinite-order AR model with some parameter constraints.

So, consider first the AR model of infinite order:

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ at. (4.17)

Such an AR model is not realistic, though, due to its infinite number of parameters. One
way to make the model practical is to assume that the coefficients φi satisfy some constraints so
that they are determined by a finite number of parameters. As an example of a simple special
case, we could have them depend on the single parameter θ1 via φi = −θi1 for i ≥ 1. This leads
to the model

rt = φ0 − θ1rt−1 − θ21rt−2 − θ31rt−3 − · · ·+ at. (4.18)

For this model to be stationary, θ1 must be less than one in absolute value, i.e. |θ1| < 1. If
this requirement is not fulfilled, then θi1 will increase without bounds and the series will explode.
Instead, since |θ1| < 1, we have θi1 → 0 as i → ∞. This means that the contribution of rt−i to
rt decays exponentially as i increases; i.e. that past observations play smaller and smaller roles
the older they are. This is both reasonable and intuitive as the dependence of a stationary series
rt on its lagged value rt−i should decay over time.

We can rewrite model (4.18) in a rather simple form. To see this, we first rewrite it as

rt + θ1rt−1 + θ21rt−2 + · · · = φ0 + at. (4.19)

Substituting t→ t− 1, the model for rt−1 is then

rt−1 + θ1rt−2 + θ21rt−3 + · · · = φ0 + at−1. (4.20)

Multiplying this equation by θ1 and subtracting the result from the previous equation yields

6Sometimes the AIC and BIC formulas are scaled by a factor of the sample size N .

42

4.3. Moving Average (MA) Models Chapter 4. Traditional Time Series Analysis

rt + θ1rt−1 + θ21rt−2 + · · · − θ1
(
rt−1 + θ1rt−2 + θ21rt−3 + · · ·

)
= φ0 + at − θ1 (φ0 + at−1) (4.21)

rt = φ0 (1− θ1) + at − θ1at−1 (4.22)

This result says that, apart from the constant term with φ0, rt is a weighted average of shocks
at and at−1. For this reason—that it is a weighted average and that it only goes back one time
step to t − 1—the model is called a moving-average MA model of order 1, or simply an MA(1)
model for short. Collecting φ0 (1− θ1) into the constant c0, the general form of an MA(1) model
is

rt = c0 + at − θ1at−1, (4.23)

or, making use of the backward shift operator,

rt = c0 + (1− θ1B) at. (4.24)

Again, {at} is a white noise series. Similarly, an MA(2) model is in the form

rt = c0 + at − θ1at−1 − θ2at−2 (4.25)

= c0 +
(
1− θ1B − θ2B2

)
at. (4.26)

Finally, we generalize to an MA(q) model

rt = c0 + at − θ1at−1 − · · · − θqat−q (4.27)

= c0 + (1− θ1B − · − θqBq) at, (4.28)

where q > 0.
We now review some properties of MA models. First, the constant term c0 is the unconditional

mean of the series, i.e.

E(rt) = c0 (4.29)

Second, by taking the variance of (4.28) above and using the fact that at and at−1 are
uncorrelated, the variance of an MA(q) model can be shown to be

VAR(rt) =
(
1 + θ21 + θ22 + · · ·+ +θ2q

)
σ2
a. (4.30)

Evidently, both the mean and variance are time-invariant, and hence MA models are always
weakly stationary.

Moreover, regarding autocorrelation, it can be shown that the ACF for an MA(q) model cuts
off after lag q. That is, the lag-q ACF is not zero, but ρ` = 0 for all ` > q. This makes the
ACF a useful tool for identifying the order of an MA model, just as the PACF is useful for order
determination of AR models, as described in 4.2.1. Recall that the order p of an AR model can
be determined as the lag at which the PACF cuts off. Similarly, the order q of an MA model
is determined as the lag at which the ACF cuts off; or, more precisely, as the lag q for which
ρq 6== 0 but ρ` = 0 for ` > q. So, order determination is performed qualitatively via the PACF
for AR models and the ACF for MA models. Again, the earlier Table 4.1 gives a good overview.

The above treatment of MA models mainly serves the purpose of laying the theoretical foun-
dation for the more advanced ARMA models (and their extensions). For a further examination
of MA models, we refer to e.g. [36], [37], [38], [39], [40].

43

4.4. ARMA Models Chapter 4. Traditional Time Series Analysis

4.4 Autoregressive Moving Average (ARMA) Models

So far, we have considered the simple AR and MA models. In some applications, these become
too cumbersome because a complex, high-order model with many parameters may be needed to
adequately describe the dynamic structure of the data. Indeed, in our case, these models will not
be able to encompass the complexity of financial data which we consider here. For this reason, we
will not make practical use of AR and MA models individually. But the theoretical treatment
above is far from in vain; to overcome the methods’ individual difficulties and shortcomings,
they are combined into the so-called autoregressive moving-average (ARMA) models which we
introduce here. By combining the ideas of AR and MA models into a compact form, ARMA
models keep the number of parameters small. Still, however, the chance is low of using ARMA
models for financial return series [40], but their theory lays some important groundwork for even
more advanced methods.7

We begin by studying the simplest case of a combination comprising an AR(1) and MA(1)
model, which is denoted an ARMA(1, 1) model. A time series rt follows an ARMA(1, 1) model
if it satisfies

rt − φ1rt−1 = φ0 + at − θ1at−1, (4.31)

where {at} is a white noise series. The left-hand and right-hand sides are the AR and MA
components, respectively. The constant term is φ0. It should be noted that, for the model to be
meaningful, we require φ1 6= θ1; otherwise, it can be shown [40] that there is a cancellation in the
equation and the process reduces to a white noise series. In addition, regarding autocorrelation,
it can be shown that neither the PACF nor the ACF of an ARMA(1,1) model cut off at any
finite lag—as opposed to the PACF for the individual AR model and the ACF for the individual
MA model, as mentioned in section 4.2 and 4.3, respectively. Instead, both the ACF and PACF
exhibit exponential decay starting at lag 2.

Now, moving on to the general case, an ARMA(p, q) model has the form

rt = φ0 +

p∑
i=1

φirt−i + at −
q∑
i=1

θiat−i, (4.32)

where {at} is a white noise series, and p and q are non-negative integers. Of course, the
individual AR and MA models are special cases of the ARMA(p, q) model. Using the backward
shift operator defined above, the model can be written

(1− φ1B − · · ·φpBp) rt = φ0 + (1− θ1B − · · · θpBp) at, (4.33)

The left-hand side polynomial (1− φ1B − · · ·φpBp) is the AR polynomial of the model, while
(1− θ1B − · · · θpBp) is the MA polynomial. We require there to be no common factors between
the AR and MA polynomials; otherwise the order (p, q of the model can be reduced [40]. Like
the pure AR model, the AR polynomial introduces the characteristic equation of the ARMA
model. If all of the solutions of the characteristic equation are less than one in absolute value,
then the ARMA model is weakly stationary. In this case, the unconditional mean of the model
is

E(rt) =
φ0

1− φ1 − · · · − φp
(4.34)

7In this regard, the concept of ARMA models is highly relevant in volatility modelling [40].

44

4.4. ARMA Models Chapter 4. Traditional Time Series Analysis

4.4.1 Order Determination for ARMA models

In sections 4.2 and 4.3, respectively, we discussed how the PACF could be used to determine the
order p of an AR model and how the ACF could do so for MA(q) models. However, this is not
the case for ARMA models; since the ACF and PACF for an ARMA(p, q) model decay (and do
not cut off at any finite lag), neither are informative in order determination for ARMA models.

How, then, do we go about the problem of order determination? One approach is to use the
extended autocorrelation function (EACF) [40]. Although the basic idea is relatively simple, the
derivation and theory is quite involved. We will not pursue this approach here, but rather turn
to the information criteria-based approach presented in section 4.2.1. This section introduced
two information criteria commonly used for model selection and order determination; namely,
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). These
criteria functions penalize model complexity; the penalty for each parameter used is 2 for AIC
and ln(N) for BIC, as evident from the formulas in section 4.2.1.

In this case of order determination for ARMA models, one computes, for some pre-specified
positive integers P and Q, AIC or BIC values for a number of ARMA(p, q) models, where
0 ≤ p ≤ P and 0 ≤ q ≤ Q. Since lower AIC or BIC is better (indicating a simpler, more
parsimonious model, which is what we seek), we select the model with the minimum AIC or
BIC.

Then, once an ARMA(p, q) model is specified, i.e. its order has been determined, its param-
eters can be estimated by either the conditional or exact likelihood method. Going into further
theoretical detail on this matter is beyond the scope of this study, and we refer to e.g. [36], [37],
[38], [39], [40]. In addition, residuals can be used to perform model diagnostics and assess the
adequacy of the fitted model, as is described and done in the practical applications in the later
analysis.

For now, we will proceed with the question of how a specified ARMA model is actually used
to provide forecasts of future values of the time series.

4.4.2 Forecasting with ARMA Models

In some applications, we are only interested in predictions one period, or time step, ahead. In
other cases, forecasts multiple periods ahead are very interesting and useful. We begin with the
former case and later generalize to the latter.

Denote the forecast origin (the point beyond which we have no actual information and from
which we must therefore forecast) by h and the available information by Fh. The 1-step ahead
forecast of rh+1 can easily be obtained from the ARMA(p, q) model as

r̂h(1) = E (rh+1|Fh) = φ0 +

p∑
i=1

φirh+1−i −
q∑
i=1

θiah+1−i. (4.35)

The “1” in parenthesis in r̂h(1) indicates that it is a 1-step ahead forecast, and the expres-
sion reads that this forecast is given by the expectation of rh+1 conditioned on the available
information Fh. The associated forecast error is

eh(1) = rh+1 − r̂h(1) = ah+1 (4.36)

The variance of the 1-step ahead forecast error is

Var [eh(1)] = σ2
a. (4.37)

45

4.4. ARMA Models Chapter 4. Traditional Time Series Analysis

Now, generalizing to the case of predictions multiple periods in the future, the `-step ahead
forecast is

r̂h(`) = E (rh+`|Fh) = φ0 +

p∑
i=1

φir̂h(`− i)−
q∑
i=1

θiah(`− i), (4.38)

where r̂h(`− i) = rh+`−i if `− i ≤ 0, and ah(`− i) = 0 if `− i > 0, and ah(`− i) = ah+`−i if
`− i ≤ 0. Thus, the multi-step ahead forecasts of an ARMA model can be computed recursively.
The associated `-step ahead forecast error is

eh(`) = rh+` − r̂h(`), (4.39)

which can be computed easily via the so-called impulse response function {ψi} of the ARMA
model, which is introduced in the following section on different ARMA model representations.

4.4.3 Three Representations for ARMA Models

The three representations of an ARMA model that will be introduced below serve three different
purposes. Knowing these representations can lead to a better understanding of the model.

The first representation is the ARMA(p, q) model in (4.33), i.e.

(1− φ1B − · · ·φpBp) rt = φ0 + (1− θ1B − · · · θpBp) at, (4.40)

which can be written as
φ(B)rt = φ0 + θ(B)at. (4.41)

The merits of this representation is its compactness and usefulness in both parameter esti-
mation and recursive computation of multi-step ahead forecasts of rt.

For the other two representations, we will use long division of the two polynomials. Given

the two polynomials φ(B) = 1 −
p∑
i=1

φiB
i and θ(B) = 1 −

q∑
i=1

θiB
i, we obtain by long division

that

θ(B)

φ(B)
= 1 + ψ1B + ψ2B

2 + · · · ≡ ψ(B), (4.42)

where the impulse response function mentioned in the previous section appears, and

φ(B)

θ(B)
= 1 + π1B + π2B

2 + · · · ≡ π(B). (4.43)

As an example, for p = q = 1, we have φ(B) = 1− φ1B and θ(B) = 1− θ1B, giving

ψ(B) =
1− θ1B
1− φ1B

= 1 + (φ1 − θ1)B + φ1 (φ1 − θ1)B2 + φ21 (φ1 − θ1)B3 + · · · , (4.44)

π(B) =
1− φ1B
1− θ1B

= 1− (φ1 − θ1)B − φ1 (φ1 − θ1)B2 − φ21 (φ1 − θ1)B3 − · · · . (4.45)

From the definition we see that ψ(B)π(B) = 1. Then, making use of the fact that the
backshift operator B satisfies Bc = c for any constant c (because the value of a constant is
time-invariant), we have

46

4.4. ARMA Models Chapter 4. Traditional Time Series Analysis

φ0
θ(1)

=
φ0

1− θ1 − · · · − θq
, (4.46)

φ0
φ(1)

=
φ0

1− φ1 − · · · − φp
. (4.47)

AR Representation

Now, using the second result of long division above, the ARMA(p, q) model can be written

rt =
φ0

1− θ1 − · · · − θq
+ pi1rt−1 + π2rt−2 + π3rt−3 + · · ·+ at (4.48)

This representation shows the dependence of the current return rt on the past returns rt−i,
where i > 0. This is also why it is called an AR representation. The coefficients {πi} are referred
to as the π-weights of an ARMA model. To show that the contribution of the lagged value rt−i
to rt is diminishing as i increases, the πi coefficient should decay to zero as i increases. An
ARMA model having this property is said to be invertible. For a pure AR model (i.e. q = 0),
θ(B) = 1 so that π(B) = φ(B), which is a finite-degree polynomial. Thus, πi = 0 for i > p, and
the model is invertible. For other ARMA models (q 6= 0), a sufficient condition for invertibility
is that all the zeros of the polynomial φ(B) are greater than unity in modulus. For example,
consider the simple MA(1) model (an ARMA model with p = 0 and q = 1) rt = (1− θ1B) at.
The zero of φ(B) = 1− φ1B is B = 1/θ1. Therefore, an MA(1) model is invertible if |1/θ1| > 1,
which is equivalent to |θ1 < 1.

This AR representation tells us that an invertible ARMA(p, q) series rt is a linear combination
of the current shock at and a weighted average of the past values. The weights decay exponentially
for more remote past values.

MA Representation

Considering the original representation φ(B)rt = φ0 + θ(B)at ⇐⇒ rt = φ0

φ(B) + θ(B)
φ(B)at and using

now the first result of long division above, the ARMA(p, q) model can be written

rt = µ+ at + ψ1at−1 + ψ2at−2 + · · · = µ+ ψ(B)at, (4.49)

where µ = E(rt) =
φ0

1− φ1 − · · · − φp
is the unconditional mean. This representation explicitly

shows the impact of the past shocks at−i for i > 0 on the current return rt, which is why it is called
the MA representation. The coefficients {ψi} are the aforementioned impulse response function
of the ARMA model. For a weakly stationary series, the ψi coefficients decay exponentially as i
increases. This is also intuitive and understandable as the effect of the shock at−i on the return
rt should diminish over time. Thus, for a stationary ARMA model, the shock at−i does not have
a permanent impact on the series.

As mentioned earlier, the `-step ahead forecast and its error variance can be expressed via
the impulse response function appearing in the MA representation. At the forecast origin h, we
have the shocks at, at−1, Therefore, the `-step ahead forecast is

r̂h(`) = µ+ ψ`ah + ψ`+1ah−1 + · · · , (4.50)

with associated forecast error

47

4.5. ARIMA Models Chapter 4. Traditional Time Series Analysis

eh(`) = ah+` + ψ1ah+`−1 + · · ·+ ψ`−1ah+1. (4.51)

Consequently, the variance of the `-step ahead forecast error is

Var [eh(`)] =
(
1 + ψ2

1 + · · ·ψ2
`−1
)
σ2
a. (4.52)

This is a nondecreasing function of the forecast horizon `; i.e., the further into the future we
forecast, the larger becomes the uncertainty on our forecasts.

Finally, the MA representation shows another feature of a stationary time series. As men-
tioned above, the stationarity implies that ψi decays exponentially and thus approaches zero as
i ⇐ ∞. Hence, by the forecast formula (4.50), we have r̂h(`) ⇐ µ as ` ⇐ ∞. Since r̂h(`) is the
conditional expectation of rh+` at the forecast origin h, the result says that, in the long term,
the return series is expected to approach its mean. We say that the series is mean-reverting.
This is also empirically evident from our practical applications of ARMA models to be shown
later.

4.5 Autoregressive Integrated Moving Average (ARIMA)
Models

Above, we considered ARMA models. For such models to be weakly stationary, we required the
solutions of their characteristic equation to be less than one in absolute value. Now, if we allow
the polynomial to have 1 as a characteristic root, then the model becomes an autoregressive inte-
grated moving-average (ARIMA) model. An ARIMA model is said to be unit-root nonstationary
because its AR polynomial has a unit root.

Now, consider a time series yt. If the change, or difference series ct = yt − yt−1 = (1−B) yt
follows a stationary and invertible ARMA(p, q) model, then the series yt is said to be an
ARIMA(p, 1, q) process. As mentioned earlier, financial price series are commonly believed to
be nonstationary. However, the logarithmic return series rt = log pt − log pt−1 is stationary. In
this case, we difference two logarithms, whereby the logarithmic price series log pt is unit-root
nonstationary and hence can be treated as an ARIMA process.

This idea of transforming a nonstationary series to a stationary one is called differencing, a
concept we also touched upon in a previous section. The change series ct = yt−yt−1 = (1−B) yt
is called the first differenced series of yt. But a time series yt may contain multiple roots and
needs to be differenced multiple times to become stationary. For instance, if both yt and its first
differenced series ct are unit-root nonstationary, but st = ct−ct−1 = yt−2yt−1−yt− 2 is weakly
stationary, then yt has double roots, and st is the second differenced series of yt. If st follows
an ARMA(p, q) model, then yt is an ARIMA(p, 2, q) process. Evidently, if yt and its first d− 1
differenced series are unit-root nonstationary, and its d-th differenced series is weakly stationary
and follows an ARMA(p, q) model, then yt is an ARIMA(p, d, q) process.

4.6 Autoregressive Moving Average Models with Exoge-
nous Variables (ARMAX)

So far, we have considered cases where the current value rt is modelled via its own past values
and shocks. However, it might be that other variables, or covariates, have an influence and thus
possess potential predictive power in the modelling of rt. Such covariates are called external or

48

4.7. Conditional Heteroscedastic Models Chapter 4. Traditional Time Series Analysis

exogenous variables, and their inclusion extends the ARMA (ARIMA) model to the ARMAX
(ARIMAX) model.

Recall the general ARMA(p, q) model

rt = φ0 +

p∑
i=1

φirt−i + at −
q∑
i=1

θiat−i. (4.53)

Letting the exogenous series be xt (we consider the general case of k such series), the
ARMAX(p, q) model is

rt = φ0 +

p∑
i=1

φirt−i +

k∑
h=1

βkxtk + at −
q∑
i=1

θiat−i. (4.54)

The coefficient βk measures the linear effect of the kth exogenous series xt on the original
series rt. xtk is the value of the kth exogenous, time-varying predictor at time t. Of course, it
would also be possible to include lagged values of the exogenous series.

As a practical example, consider the modelling of the return rt of a stock. We could model
this return with an ARMA model, using solely lagged returns and shocks. This may or may not
lead to good results and an adequate model. Now, if the company was, say, an exporter of oil,
then the oil price would be a plausible exogenous covariate, potentially improving the model and
its power to better forecast future stock prices (or, more precisely, future returns). Moreover, if
the company exported to other countries, then exchange rates between currencies would likewise
be plausible exogenous covariates.

4.7 Conditional Heteroscedastic Models

The previous sections concerned the modelling of the return of an asset. In this section and
onwards we turn to study some statistical and econometric methods for modelling the volatility
of an asset return. These are referred to as conditional heteroscedastic8 models.

Volatility plays a crucial role in finance and trading. Referring to the standard deviation of an
asset’s return, volatility is a measure of how much the return varies. For this reason, volatility
is ever so closely connected to the concept of risk : Are we gamblers who want to risk large
losses at the prospect of large potential gains? Or do we play it safe, keeping the risk low and
settling for smaller returns? But volatility also has many other financial applications than risk
management; for example, modelling the volatility of a time series can improve the efficiency in
parameter estimation and the accuracy in interval forecasting [40]. In addition, the volatility of
a market has become a financial instrument itself, enabling people to trade and speculate in it
like a normal stock or index.

Volatility has a number of characteristics commonly seen in asset returns [40]. First, volatility
tends to cluster and may be high for certain time periods and low for other periods. Second,
volatility evolves over time in a continuous manner and seldom “jumps.” Third, it does not
diverge to infinity but varies within some fixed range, which, in statistical terms, means that it is
often stationary. Fourth and finally, volatility seems to react differently to a large drop in price

8Heteroscedasticity, the absence of homoscedasticity, is a statistical term describing a collection of random
variables that contains sub-populations with different variabilities (e.g. variances or other measures of statistical
dispersion). As an example, take the variable in question here: the volatility/variance of asset returns. Assuming
homoscedasticity entails that the variation of the returns is constant in time. But, as we show in 6.1.4, this is far
from the truth; not only does the variability of returns (volatility) change in time, it also gathers in clusters (the
“sub-populations”).

49

4.7. Conditional Heteroscedastic Models Chapter 4. Traditional Time Series Analysis

than a large increase—the so-called leverage effect. These properties play an important role in
volatility modelling. The following subsections explore different models of increasing detail and
complexity.

4.7.1 ARCH Models

Developed by Robert Engle [43], autoregressive conditional heteroscedastic (ARCH) models are
used in the modelling of observed time series whenever there is reason to believe that the error
terms will have a characteristic size, or variance. In particular, ARCH models assume the variance
of the current shock, or innovation9, to be a function of the actual sizes of the previous time
periods’ shocks.

The basic idea of ARCH models is that (a) the shock at of an asset return is serially uncor-
related (i.e. no autocorrelation), but dependent, and (b) the dependence of at can be described
by a simple quadratic function of its lagged values. More specifically, an ARCH(m) assumes
that the shocks at are split into a stochastic piece εt and a time-dependent standard deviation
σt characterizing the typical size of the terms so that

at = σtεt, (4.55)

where {εt} is a sequence of independent and identically distributed (i.i.d.) random variables
with mean zero and unit variance. The variance (squared standard deviation) series σ2

t is then
modelled by

σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m = α0 +

m∑
i=1

αia
2
t−i, (4.56)

where α0 > 0 and αi ≤ 0 for i > 0. The coefficients αi must satisfy some regularity conditions to
ensure that the unconditional variance of at, i.e. σ2

t , is finite. In practice, εt is often assumed to
follow the standard normal distribution, a standardized Student-t distribution, or a generalized
error distribution.

Now, from the structure of the above model, it is seen that large past squared shocks
{
a2t−i

}m
i=1

imply a large conditional variance σ2
t for the current shock, or so-called innovation, at. Conse-

quently, at tends to assume a large value (in modulus). Hence, under the ARCH framework,
large shocks tend to be followed by another large shock. (Of course, this is not for certain; a
large variance does not necessarily produce a large realization, but only says that the probability
of obtaining a large value is greater than for a smaller variance.) This theoretical feature agrees
very well with the volatility clusterings observed in financial asset returns.[40]

4.7.2 GARCH Models

In the case of ARCH models above, we assumed an MA-type model for the error variance σ2
t . If

instead an autoregressive moving-average (ARMA) model is assumed for σ2
t , then the model is

a generalized autoregressive conditional heteroscedastic (GARCH) model [45].
For a logarithmic return series rt, let at = rt−µt be the innovation at time t. Then at follows

a GARCH(m, s) model if

9In time series analysis, the shock, or innovation, is the difference between the observed value of a variable at
time t and the optimal forecast of that value based on information available prior to time t. Thus, for an asset
return rt, the shock is defined by at = rt − µ, where µ is the mean return conditioned on all observations prior
to time t.

50

4.7. Conditional Heteroscedastic Models Chapter 4. Traditional Time Series Analysis

at = σtεt, (4.57)

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j . (4.58)

Again, {εt} is a sequence of independent and identically distributed (i.i.d.) random variables
with mean zero and unit variance, and α0 > 0, αi ≤ 0, and βj ≤ 0, where it is furthermore

understood that αi = 0 for i > m and βj = 0 for j > s. Moreover,
max(m,s)∑

i=1

(αi + βj) < 1. This

constraint implies that the unconditional variance of at is finite, whereas its conditional variance
σ2
t evolves over time. The αi and βj are the ARCH and GARCH parameters, respectively. m

and s are the corresponding parameters denoting the order(s) of the model. Of course, if s = 0,
then the above GARCH model (4.58) reduces to an ARCH(m) model.

The strengths and weaknesses of GARCH models can be seen by focusing on the simplest
case and then generalizing. The simple GARCH(1,1) model has σ2

t = α0 + α1a
2
t−1 + β1σ

2
t−1,

0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1. First, a large a2t−1 or σ2
t−1 evidently gives rise to a large σ2

t . In
turn, via (4.57), this large σ2

t results in a large a2t . Thus, a large past shock a2t−1 tends to be
followed by another large shock a2t , generating the well-known behaviour of volatility clustering
observed in financial time series. Second, it can be shown [40] that, similar to ARCH models,
the GARCH(1,1) process has heavier tails than the normal distribution. This makes it a better
candidate for modelling financial return series because these have been shown empirically to
exhibit heavy-tailed distributions [46]. Third, the GARCH model provides a simple parametric
function that can be used to describe the volatility evolution. As for weaknesses, the GARCH
model encounters the same problems as the ARCH model. For instance, it responds equally to
positive and negative shocks.10 In addition, empirical studies of high-frequency financial data
indicate that the tail behaviour of GARCH models—although heavy as it is—is still too short
even with shocks modelled by standardized Student-t [40].

4.7.3 IGARCH Models

Just as ARMA models became ARIMA models in the case of a unit root in the AR polynomial,
so do GARCH models become integrated generalized autoregressive conditional heteroscedastic
(IGARCH) models. Similar to ARIMA models, a key feature of IGARCH models is that the
impact of past squared shocks at−i for i > 0 on at is persistent.

The IGARCH model is just a restricted GARCH model, the only difference being the unit-
root condition

m∑
i=1

αi +

s∑
j=1

βj = 1. (4.59)

In the simplest case of m = s = 1, this condition becomes α1 + β1 = 1. The IGARCH(1,1)
model can thus be written

at = σtεt, (4.60)

σ2
t = α0 + (1− β1) a2t−1 + β1σ

2
t−1, (4.61)

10An equal response to positive and negative shocks might sound plausible at first. However, negative returns
have been observed to increase the future volatility by a larger amount than positive returns of the same magnitude
[44]. This is called the leverage effect and is included in extensions to the GARCH model such as the NGARCH
model or the EGARCH model.

51

4.7. Conditional Heteroscedastic Models Chapter 4. Traditional Time Series Analysis

where {εt} are i.i.d. random variables with mean zero and unit variance as before, and 0 < β1 < 1.

4.7.4 EGARCH Models

The conditional variance models described assume an equal response to positive and negative
shocks. Thus, they do not take into account the aforementioned leverage effect observed in
many financial time series. A model that does account for this effect is the exponential GARCH
(EGARCH) model. It is a variant that models the logarithm of the conditional variance process
whilst also including additional leverage terms to capture asymmetry in volatility clustering.

The simple case of an EGARCH(1,1) model can be written

rt = µ+ at (4.62)

at = σtεt (4.63)

log σ2
t = α0 + γ1 log σ2

t−1 + α1

[
|at−1|
σt−1

− E
[
|at−1|
σt−1

]]
+ ξ1

|at−1|
σt−1

. (4.64)

The form of the expected value in the expression depends on the distribution of the innovation
process εt. Typically, either a Gaussian or Student’s t is chosen.

In our analysis in Chapter 6, we will mainly make use of the GARCH and EGARCH models.

4.7.5 Conditional Heteroscedasticity Tests

A time series can be tested for conditional heteroscedasticity (autocorrelation in the squared
series, or so-called volatility clustering) in a more quantitative way than just inspecting the ACF
and PACF plots of the squared series. Below, we present two ways to do it.

Box-Ljung Q-test:

First, conditional heteroscedasticity can be tested for by means of the Ljung-Box Q-test
introduced in section 4.1.2. There, we considered the autocorrelation of the return series.
In this case, when testing for ARCH effects11, the Ljung-Box Q-test is conducted on the
squared series. See section 4.1.2 for the formulae, hypotheses, decision rules, etc.

Engle’s ARCH test:
An alternative test for conditional heteroscedasticity is Engle’s ARCH test [43], a Lagrange
multiplier test for assessing the significance of ARCH effects.

We consider the residual series et = rt − µ̂t, where µ̂t is the mean. If all autocorrelation
in the original series rt is accounted for in the conditional mean model (e.g. an ARIMA
model), then the residuals are uncorrelated with mean zero. However, the residuals can
still be serially dependent.

The alternative hypothesis in Engle’s ARCH test is autocorrelaton in the squared residuals,
as given by the regression

Ha : e2t = α0 + α1e
2
t−1 + · · ·+ αme

2
t−m + ut, (4.65)

11A time series exhibiting conditional heteroscedasticity (autocorrelation in the squared series) is said to have
autoregressive conditional heteroscedastic (ARCH) effects.

52

4.7. Conditional Heteroscedastic Models Chapter 4. Traditional Time Series Analysis

where ut is white noise. The null hypothesis H0 is that of zero autocorrelation in the
squared series (no ARCH effects), i.e.

H0 : α0 = α1 = · · · = αm = 0. (4.66)

The test requires the specification of the lag m. One way to choose m is to compare
loglikelihood values for difference choices of m, using e.g. the Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC).

The test can be generalized to GARCH effects by noting that a GARCH(p, q) model is
locally equivalent to and ARCH(p + q) model. This suggests also considering values m =
p+ q for reasonable choices of p and q.

The test statistic is the Lagrange multiplier statistic TR2, where T is the sample size
and R2 the coefficient of determination from fitting the ARCH(m) model for m lags via
regression.

53

Chapter 5

Machine Learning Methods

This chapter gives a detailed description and discussion of the theoretical framework behind
the selected machine learning methods applied in this study. The particular choice of methods
is based mainly on the historical and contemporary research in the literature as well as our
own academic experience with the methods and our ideas for their applicability to financial
forecasting.

5.1 Introduction

Generally, machine learning methods are used to obtain some adaptive model of a data set—be it
spatial or a time series as well as continuous or discrete. The approach is to tune the parameters
of the model by use of a subset, called the training set, of the available data. The data comprise a
certain number of observations, each having the same finite dimension. This is referred to as the
input data. Depending on the problem and the method used for solving it, the data sometimes
also include a desired value, the target, for each observation. The result of the machine learning
algorithm can then be expressed as a function that takes as argument the input data and then
generates an output of the same type as the potential target data. The precise form of this
function, as defined by the parameters governing it, is determined during the training phase, or
learning phase, on the basis of the training data.

The model parameters are tuned so as to minimize a certain measure of the deviation, or
error, between the output and the target—granted, of course, that target data are available
for the given problem. Here, one distinguishes between supervised learning and unsupervised
learning ; the data in the former type include target values, whereas the data in the latter type
does not. Thus, the goal in unsupervised learning is either to discover groups of similar examples
within the data (called clustering), or to determine the distribution of data within the input
space (called density estimation), or to project the data from a high-dimensional space down to
two or three dimensions (visualization). We are concerned with supervised learning, since target
data (stock prices) are available.

After the model has been trained, it can then be used on new, previously unseen data—
referred to as the test set—for the purpose of either categorizing/classifying these new points,
or—highly relevant for our study—forecasting their future target values. The ability of the
model to correctly categorize or predict new examples is known as generalization, and this is of
the utmost importance. There is also another distinction present here; cases in which the aim
is to assign each input to one of a finite number of discrete categories are called classification
problems; on the other hand, if the desired output consists of one or more continuous variables,

54

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

then the task is called regression. We will consider both classification and regression problems.
The latter type might be the most obvious, since the ultimate goal is to predict continuous stock
prices. However, we will also consider some of the problems as classification tasks; this approach
can be pursued e.g. by slightly readjusting our expectations for the forecasts in the sense that we
wish to predict not the value of the price but instead whether it will move up or down. Another
application of classification could be to the problem of categorizing stocks into e.g. “good” and
“bad” investments based on a number of criteria defined in the input data.

5.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that draw inspira-
tion from biological neural systems. Of course, the human brain is far more complex than what
our current level of computing power allows us to program on computers, and ANNs merely
attempt to replicate some of the most basic behavioral and adaptive features of biological neural
networks.

To lay the groundwork, this section begins with a description of the methodology behind feed-
forward networks and the steepest descent backpropagation algorithm used for network training.
We also discuss the merits and shortcomings of several other training algorithms, comparing
them to what is required for our particular task in order to choose the most suitable algorithm.
Next, we proceed with a description of the actual type of neural network used in this study,
namely the nonlinear autoregressive network with exogenous (external) inputs (NARX). Finally,
we discuss the general strengths, weaknesses, and problems of artificial neural networks.

5.2.1 Feedforward Networks

An Artificial Neural Network (ANN) is a layered network of interconnected neurons, or nodes.
The network consists of an input layer, a number of hidden layers, and an output layer. Each
layer consists of a number of neurons, each of which is connected to the other neurons in the
subsequent layer, as shown in Figure 5.1 below. In biological terms, these connections are called
synapses.

Figure 5.1: Artificial Neural Network structure. The example shown has three input neurons,
one hidden layer with five neurons, and two output neurons.

To understand how neural networks work we must consider the case that some input, or

55

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

stimulus, is presented to it. Let the ith input signal be denoted by xi. The connections then
transfer these signals into the neurons in the hidden layer. Each connection is ascribed a certain
weight wij , representing the importance of the particular input.

We now find ourselves in the hidden layer. Each neuron in this layer has received some signals
from all of the input nodes. The sum of weighted inputs

∑
i wixij is then calculated in each

hidden neuron and passed on as argument to the activation function φ, which yields a signal yj
for the j th hidden neuron. Now, a variety of different activation functions can be used, however,
most of them limits the range of the neuron’s output to the interval [0, 1] or [−1, 1]. Among
these we find e.g. the threshold or step function, which is either 1 or 0, and the piecewise linear
function, which is also 1 or 0 but with an added linear segment in between. Sometimes, a pure
linear function is used, which does not limit the output range. Common choices for activation
functions are the hyperbolic tangent and the sigmoid, as defined, respectively, by:

φ(x) = tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1
(5.1)

φ(x) =
1

1 + e−x
(5.2)

These squash the range into the intervals [−1, 1] and [0, 1], respectively. The choice of activa-
tion function naturally depends on which function makes most sense to use with respect to the
particular problem and the corresponding data.

The output of the j th hidden neuron is then given by yj = φ(sj), where sj denotes the sum
of weighted inputs coming into the j th hidden neuron. Now, if there is more than one hidden
layer,1 the signals yj from the first hidden layer are then transferred along similar connections,
with weights ascribed to them, to the neurons in the subsequent hidden layers. Again, the sums
of weighted signals are calculated and used as arguments in whichever activation function is
chosen. Finally, the signals out of the neurons in the last hidden layer are then transferred along
connections to a number of output neurons. For each output neuron, k, the sum of weighted
signals from the neurons in the last hidden layer is calculated. Letting the signals from the
hidden neurons be the yj from before, the output zk from the kth output neuron is computed as
zk = φ(sk), where sk denotes the mentioned sum (with the proper weights between hidden and
output neurons). In this way, the neural network processes the given information by transferring
the initial input signals through the layers of the network until finally giving a number of outputs.
This direction of flow is also the reason that such networks are classified as feed-forward networks.

5.2.2 Network Training and Learning Algorithms

So far, we have described how the network processes some input and finally yields some output.
However, the question arises: “What now?”

We have a large amount of input data, often denoted the patterns, as well as some desired,
target output. It is these input patterns that are fed to the network, after which we obtain
some computed output. This output will often be somewhat different from the desired, target
output. But our goal, what we would like to accomplish, is to get the computed output to be
as close as possible to the target output. For this purpose we must train the network; that is,
adjust the connection weights between neurons to minimize a measure of the error. There are
several ways to do this, and under one name they are called training or learning algorithms.
The most common one of these—standard Steepest Descent Backpropagaton—is considered in

1There could also be zero hidden layers, in which case the network would be a single-layer network. The
network described, i.e. with one or more hidden layers, is a multi-layer network.

56

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

the following subsection. After that, we give an overview and discussion of a wide variety of
extensions and other training algorithms.

Backpropagation (Steepest Descent)

The simplest and most common learning algorithm is backpropagation. As the name suggests,
the basic idea is to propagate output error signals backwards through the network and adjust
the weights.2 Qualitatively, the process can be summarized as follows:

1. Feed an input pattern from the training data into the ANN.

2. Run it through the layers of the network to obtain the computed output.

3. Calculate the error between the resulting, computed output and the actual, desired output.

4. Propagate the errors backwards through the network and tweak the weights of all the
connections in the direction (positive or negative) that minimizes the error of the output.

This process is repeated over a set of training data. The tweaking, or adjustment, of the
weights is performed using a formula called the Delta Rule, which is based on the principle of
gradient descent. As for the error measure to be minimized, this is often taken as the sum (over
the patterns h) of squared errors:

SSE =
1

2

M∑
h

Eh =
1

2

M∑
h

(zth − zph)
2
, (5.3)

where zth and zph are the desired/target output (associated to the input data) and the predicted
output (assuming there is just one output neuron), respectively, for the hth pattern. For the
exact formulae for the error signals and weight adjustments—and the Delta Rle in general—we
refer to e.g. [10].

Related to backpropagation and the weight updates are also the so-called learning rate and
momentum parameters, denoted by η and α, respectively. Moreover, we also need some criteria
for when the network is deemed sufficiently learned and training should be stopped. These points
are listed and described below.

Learning Rate: The learning rate η determines the size of the weight changes during the
backpropagation. Small values of the learning rate parameter make the weight corrections
small, thus making the weights change only by a little bit, which results in increased
learning times (and consequently longer computation times). Although small learning
rates do tend to decrease the chance of overshooting the optimal solution to the problem,
they also increase the risk of getting stuck at local minima of the error function. Large
values of the learning rate, on the other hand, may train the network faster, but with the
possibility that no learning is achieved at all.

Momentum: Several factors contribute when it comes to updating the weights. Whereas the
learning rate affects the current correction term applied to the weight, as described above,
the momentum α is a parameter that determines the extent to which the previous correc-
tion term should affect the current weight change. Including momentum can help reduce
oscillations in the error curve.

2The amount of adjustment depends on the output error signal, the activation function and some parameters,
the learning rate and the momentum, which will be described shortly. For the precise formulae, see e.g. [10].

57

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

Stopping Criteria: There are different ways to determine when the ANN algorithm should
stop iterating. In neural network jargon, one iteration corresponds to one epoch. Set-
ting a maximum value for the number of epochs can serve as a stopping criterion for the
algorithm—whether we have achieved convergence to a solution or not. Another stopping
criterion deals with the error, i.e. the difference between the known, target output and
the predicted output produced by the network. Specifying when an appropriate measure
of the error—e.g. the sum of the squared errors (SSE)—is sufficiently low for one’s wishes
also serves as a stopping criterion. This error tolerance, or accuracy, is then the value at
which the neural network is deemed to be fully—or, rather, sufficiently—trained.

Overview and Discussion of Training Algorithms

This section lists and discusses the majority of available algorithms for network training. Many
of them draw from and include the same basic ideas as the backpropagation algorithm described
above. It is beyond the scope of this project to delve into further detail on the theory behind
neural network training algorithms. Rather, we will discuss the merits and shortcomings of each
algorithm, and argue on this basis as to why they will either be considered or discarded in our
particular case.

Gradient Descent Backpropagation: This is the basic backpropagation algorithm described
in Section 5.2.2. The network weights and biases are updated in the direction of the
negative gradient of the error function, with the steps determined by the constant learning
rate parameter. As one of the very first and most common learning algorithms, it sports
several extensions. Among these we find the inclusion of the momentum, which defines
the sensitivity of the correction term to the previous values. This was also discussed in
Section 5.2.2 above. A more advanced extension includes both momentum and an adaptive
learning rate; no longer held constant, the learning rate is now adapted during training to
continuously find the best balance between large values (which can result in oscillations
and instability) and small values (which can make the algorithm take too long to converge)
and thus to obtain a lower error and better performance. This most advanced extension is
a potential candidate for use in our study, but only comes in as a second choice due to its
often slow convergence.

Resilient Backpropagation: This algorithm takes into account only the sign of the partial
derivative (rather than the magnitude, as we saw for the normal backpropagation algorithm
in Section 5.2.2), and adjusts each weight independently. This is also one of the reasons for
the algorithm being one of the fastest for pattern recognition problems. However, it does
not perform well on function approximation (regression) problems—our main focus—which
is why we discard it in favor of some of the other algorithms. For a complete description
of resilient backpropagation, see e.g. [20].

Conjugate Gradient: This class spans several algorithms, all of which start out by searching
in the steepest descent direction (i.e. normal backpropagation). A search is then performed
to determine the optimal distance to move along the current search direction. Then, the
next search direction is determined so that it is conjugate to previous search directions.
The various conjugate gradient algorithms are distinguished by the manner in which they
combine the new steepest descent direction with the previous search direction to obtain
the new search direction. Although it varies depending on the problem and application,
the conjugate gradient algorithms are generally much faster than adaptive learning rate
backpropagation, and sometimes faster than resilient backpropagation. Requiring only

58

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

slightly more storage space than simpler algorithms, the conjugate gradient algorithms are
good for networks many weights. They are almost as fast as Levenberg-Marquardt on
function approximation problems (faster for large networks) and almost as fast as resilient
backpropagation on pattern recognition problems. The latter is not that relevant for our
case, but the former—their regression performance—make them a plausible contender as
the method of choice for us. They will not be our primary choice here, but we will keep
them as a second choice. For a detailed discussion, see e.g. [21].

Quasi-Newton Backpropagation: This is an alternative to conjugate gradient algorithms,
often with faster convergence. Unfortunately, it requires the equivalent of matrix inverse
(an often computationally demanding task) to be computed at each iteration. For large
networks, the algorithm is not as adequate as resilient backpropagation and the conjugate
gradient methods. It can be an efficient training function for smaller networks, though.
We will keep it as a second choice. For more a detailed discussion, see e.g. [22, p. 119].

Levenberg-Marquardt: This algorithm performs an approximation to the matrix computation
mentioned above in a much faster and less complex way. A type of mix between the two
methods above, it introduces a parameter µ that balances the weight adjustment process
between Newton’s method (small µ) and a gradient descent method with small step size
(large µ). Since Newton’s method is faster and more accurate near an error minimum,
the aim is to shift towards this methods as quickly as possible by decreasing µ after each
successful step (i.e. reduction in the error). µ is only increased when a tentative step would
increase the error. In this way, error is always reduced at each iteration of the algorithm.

In general, on function approximation (regression) problems, for moderately-sized networks
(up to several hundred weights), the Levenberg-Marquardt algorithm will have the fastest
convergence. This advantage is especially noticeable if very accurate training is required.
In many cases, the algorithm is able to obtain lower mean square errors (MSE) than any
of the other algorithms. However, as the number of weights in the network increases, the
advantage of the algorithm decreases. In addition, the algorithm performs relatively poorly
on pattern recognition problems. This is not so relevant for our case, though, since we will
mainly be concerned with regression. The method’s merits for this type of problem make
it an outstanding candidate for the training algorithm of choice. For a thorough discussion
of the Levenberg-Marquardt method as a neural network training algorithm, we refer to
e.g. [23].

Since our main focus in this thesis is on forecasting prices and trends in the financial markets—
inherently a regression problem—and since the networks used will not contain too many inputs
and hidden neurons (and thus weights), the Levenberg-Marquardt algorithm is a good choice of
learning algorithm for our particular application. Indeed, this is the algorithm we will mainly use
in the later analysis in Section 6.1.5. Some of the other algorithms also have appealing features,
and as second choices we will keep in mind backpropagation with momentum and adaptive
learning rate as well as the conjugate gradient.

5.2.3 Recurrent Networks

The feedforward networks discussed above are very efficient at learning static patterns. However,
when it comes to patterns that change in time—as encountered in some3 time series—such
networks usually underperform and are thus inadequate. The main reason is that feedforward

3Not all time series exhibit patterns.

59

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

networks do not take past input patterns into account when analysing a pattern presented to
them. To deal with this issue one could feed a feedforward network with lagged data, but this
approach can drastically increase the number of inputs and thus introduce unwarranted model
complexity.

A better solution to the problem of time series data is the use of recurrent, or feedback,
networks. These are networks with neurons that have feedback connections; that is, the neurons
have connections to themselves or send their outputs to a previous layer. For example, a neuron
may send its output to itself, allowing it to incorporate this information in the analysis of the
next pattern, or the output layer may send its final answer as an input for the next pattern (see
e.g. the bottom panel in Fig. 5.2).

This class spans many different subtypes of networks.4 In this case, we will make use of a
specific type of dynamic, recurrent network; namely, the nonlinear autoregressive network with
exogenous (external) inputs (NARX).

The NARX network is used to predict future values of a time series {yt} using past values of
that time series (the autoregressive part) and past values of a second (or more) time series {xt}
(the exogenous inputs). The model can thus be written

y(t) = f (yt−1, . . . , yt−d, xt−1, . . . , xt−d) , (5.4)

where f is some unknown function that the network is trying to approximate, and d is the
number of delays, or lags, determining how many past values that are used.

This makes NARX networks particularly appealing for our case, since we would like to predict
future values or trends in the price of a financial asset using historical/past information of (i) the
price itself (which would correspond to yt) and (ii) other data such as e.g. technical indicators,
other stocks or indexes, etc. (which would be the exogenous inputs x(t)).

There exists two different types of NARX network architectures; the series-parallel (open
loop) configuration and the parallel (closed loop) configuration. Visual examples of these are
presented in Fig. 5.2. In both images, y(t) and x(t) denote the main time series and exogenous
inputs, respectively. The large box named “Hidden” shows the hidden layer of the network.
Here, we see that delays/lags of 1, 2 of the target y and inputs x are used (i.e. d = 2 according
the above notation). Moreover, the hidden layer employs a sigmoid activation function (the
curve in the rectangular box), and the number of hidden neurons is 10. The boxes with “w”
and “b” indicate the weights and biases, respectively. The large box named “Output” shows
the output layer, where we see that there is just a single output neuron with a linear activation
function. The difference between the two configurations is the loop (long green line) in the
bottom image, which indicates the feedback connection between the output and the input. In
the open-loop configuration the true outputs y(t) are sent into the network, while in the closed-
loop configuration the estimated outputs are fed back into the network.

4It is beyond the scope of this thesis to consider all of them. For this, we refer to e.g. [1], [2].

60

5.2. Artificial Neural Networks Chapter 5. Machine Learning Methods

Figure 5.2: NARX network architectures. Top: series-parallel (open loop) configuration. Bot-
tom: parallel (closed loop) configuration.

For network training, the series-parallel configuration is most useful and efficient. The reason
is that the true output (e.g. the actual, observed stock prices) is available during the training
process, allowing us to use this output instead of feeding back the estimated output through
the loop. This has two advantages: (i) the input to the network is more accurate (not using
estimated values); and (ii), the resulting network has a purely feedforward architecture, allowing
more efficient algorithms to be used for training. The series-parallel (open loop) architecture is
also suitable for one-step ahead prediction.

However, for multi-step ahead prediction5, the series-parallel (closed loop) architecture is the
configuration of choice. For example, for predicting the value yt+1 one step ahead in time, we can
use the known values yt, yt−1, . . . and xt, xt−1, But, for predicting the value two steps ahead,
i.e. yt+2, we do not know yt+1 and xt+1. The useful feature of the closed-loop configuration is
that it allows us to use the prediction ỹt+1 as an estimate for yt+1. It does this by feeding back,
along the closed loop, the estimated output ỹt+1 to be used as an input for prediction at the
next time step.

5.2.4 Strengths, Weaknesses and Problems

Here, we recount and discuss the strengths, weaknesses, and problems with ANNs.
In regards to network training, one needs to be aware of one of the main problems with ANNs;

namely the problem of overtraining, or overfitting. As the name suggests, this is a problem that
can occur if the neural network is trained too much, i.e. for too many epochs, or by having many
hidden neurons.

Now, one of the main advantages of neural networks is their ability to learn from data, and
thus their potential to generalize, i.e. to produce a proper output for previously unseen data. This
generalization feature is vital for prediction tasks such as ours. However, when a network suffers

5In this thesis we mainly consider one-step ahead prediction. Using recurrent networks for multi-step ahead
prediction is a topic for future work.

61

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

from overtraining, it memorizes patterns in the input and thereby loses the important ability to
generalize. We are very interested in avoiding this, and one of the ways to prevent overtraining
is to perform so-called train-and-test procedures, in which the network is first trained on a large
part of the data sample and then tested on the remaining, smaller part to see if it has the ability
to generalize what it learned during training when met with unknown patterns.6 If the network
performs poorly on the test data, then the network configuration (i.e. the number of hidden
layers and/or neurons) and parameters (the learning rate and momentum) can be changed and
the network re-trained and re-tested.

We also find some drawbacks and shortcomings among the various training algorithms. For
instance, backpropagation, the most common learning algorithm, adjusts the weights via the
gradient descent method, following a negative slope along the “error landscape.” While it does
minimize error, there is a chance that it only finds a local minimum, and not a global one, thus
yielding a network that is not properly optimized.

We now move on to the network architecture, or structure, which refers to the amount of
input, hidden, and output layers, and the number of neurons in each. In this regard, we do not
necessarily meet some direct strengths or weaknesses. However, we do face some ambiguity and
freedom of choice, as there is no generally optimal way of constructing a neural network.

Now, as for the numbers of input and output neurons, these are determined by the problem
at hand, and more specifically the data (i.e. the amount of input features and outputs). As
for the hidden neurons, there is no agreed-upon number for the amount of these. There are,
however, several rules of thumb suggested in the literature by ANN researchers.[9][10] One is
the geometric pyramid rule suggesting that, for a three-layer network with ni input neurons and
no output neurons, the hidden layer should have nh =

√
nino neurons (or, depending on the

problem, somewhere between one-half to two times this value). Another rule suggests that nh
should be about 75% of ni, while yet another one says that nh = 2ni + 1. All of these rules
incorporating the number of input neurons implicitly assume that the training set is sufficiently
large [10], otherwise the network is prone to suffer from overtraining, as discussed above. This
is not much of an issue in our case, though, seeing that our data sets are very large.

In reality, selecting the best number of hidden neurons involves a great deal of experimen-
tation. It is common to apply a so-called fixed method in which the number of hidden neurons
is varied—while keeping all other parameters constant—for the purpose of finding the optimal
network structure–in the sense that the SSE is minimized, local minima are avoided, and over-
training is prevented. Other, more advanced methods of finding the optimal network structure
include optimization techniques such as e.g. Genetic Algorithms, Particle Swarm Optimization,
etc. [7], [8], [11]

In a later section we compare ANNs to another popular machine learning method: Support
Vector Machines.

5.3 Support Vector Machines

Support Vector Machines (SVMs) are a type of supervised learning method; that is, they use
a desired, target output for learning patterns in data. On the fundamental level, SVMs work
by establishing an optimal hyperplane that separates the input data. Depending on the type
of output data—whether it is discretely labeled (often binary) or continuous—we distinguish
between SVM classification and regression, respectively. In the following subsections we will go

6From our review of the literature in Section 1.3, the training data often makes up between 80% and 90% of
the total data, while the test data makes up the remaining 10-20%.

62

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

into much further detail on all of these points and more.7

5.3.1 SVM Classification

SVM classification is a generalization of linear decision boundaries for classification. Simpler
methods for statistical learning can only obtain optimal separating hyperplanes (the decision
boundary) when the classes are linearly separable; in two dimensions, this can be visualized
by two clusters of points completely separated by a straight line, i.e. without any points on
the wrong side (as in the left panel in Fig. 5.3). SVMs, however, is an advanced method that
covers even the nonseparable case where the classes overlap. It produces nonlinear boundaries
(visualized in two dimensions by curves and other nonlinear functions) by constructing a linear
boundary in a large, transformed version of the feature space.

In going through the theoretical framework of SVMs, we begin by briefly reviewing the sim-
pler problem of constructing an optimal separating hyperplane between two perfectly separable
classes. Following [?], we then proceed by generalizing to the nonseparable case.

As with all machine learning methods, we must have some training data to feed to the
computer in order for it to learn patterns and (hopefully) be able to properly generalize to the
unseen test data.

Let the training data consist of N observations (x1, y1) , (x2, y2) , . . . , (xN , yN). Here, xi ∈ Rp,
which means that each input pattern xi is a p-dimensional vector of p features. As for the output,
yi ∈ {−1, 1}, meaning that the two classes are labeled by −1 and 1. Then, define a hyperplane
by {

x : f(x) = xTβ + β0 = 0
}
, (5.5)

where β is a unit vector with ‖β‖ = 1. Classifying the points into the group G ∈ {−1, 1} is done
by

G(x) = sign
[
xTβ + β0

]
. (5.6)

It can be shown8 that f(x) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function f(x) = xTβ+β0 for
which yif(xi) > 0∀i. Consequently, we can find the hyperplane that creates the largest margin
between the training points for the two classes 1 and −1. This margin, along with the hyperplane
and some examples of training points, are visualized in the two-dimensional case in Figure 5.3.

7For the basic implementation of SVMs we have made use of the LIBSVM package [33].
8See e.g. [2].

63

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

Figure 5.3: Support vector classifiers. The left part shows the separable case. The green and
red dots are points, or observations, the colors of which dictate their class. The solid line is the
decision boundary, and the dotted lines bound the yellow maximal margin area. The points on
the dotted lines are the support vectors. The right part shows the nonseparable case where overlap
is allowed. Points labeled ξ∗j are on the wrong side of their margin by an amount ξ∗j = Mξj ,
where M is the width of the margin. Defining ξj = 0 for points on the correct side, the margin
is maximized subject to the constraint

∑
ξi ≤ constant. Hence,

∑
ξi ≤ C is the total distance

of points on the wrong side of the margin.

This concept—finding the largest margin—is evidently connected to optimization, and more
specifically maximization. Indeed, it can be stated as the optimization problem

max
β,β0,‖β‖=1

M (5.7)

subject to yi(x
T
i β + β0) ≥M, 1, . . . , N. (5.8)

The set of conditions in the latter equation above ensure that all the points are at least a
signed distance M away from the decision boundary (as shown in Figure 5.3) defined by the
parameters β and β0. (Note that β is a p-dimensional vector like x.) In the maximization
problem, we thus seek the largest such M and associated parameters. The constraint ‖β‖ = 1
can be dropped by replacing the conditions with

1

‖β‖
yi(x

T
i β + β0 ≥M (5.9)

⇔ yi(x
T
i β + β0 ≥ ‖β‖M (5.10)

For any β and β0 satisfying these inequalities, any positively scaled multiple satisfies them,
too. Hence, we can set ‖β‖ = 1/M . The optimization problem can thus be rephrased as

min
β,β0

1

2
‖β‖2 (5.11)

subject to yi(x
T
i β + β0) ≥ 1, 1, . . . , N. (5.12)

Note that the previous maximization problem is now a minimization problem.9 This is an
example of a quadratic programming problem where we must minimize a quadratic function
subject to a set of linear inequality constraints.

9Maximizing ‖β‖−1 is equivalent to minimizing ‖β‖2. [1, p. 328] The factor of 1/2 is included for later
convenience.

64

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

Solving this constrained optimization problem can be done using Lagrange multipliers. How-
ever, due to the size and scope limitations of this thesis, we will not go into further detail in this
regard.10

Solving the optimization problem yields the solution vector β and bias beta0, i.e. the param-
eters that make up the model. It can be shown that these parameters solely depend on those
data points xi that lie on the boundary of the maximum margin hyperplane (data points not on
the hyperplane contribute nothing). These points on the hyperplane are called support vectors.

The optimal separating (maximum margin) hyperplane produces a function f̂(x) = xT β̂+ β̂0,

where β̂ and β̂0 are the determined optimal parameters. This function—namely its sign—is used
to classify new points, or observations, via

Ĝ(x) = signf̂(x) (5.13)

Overlapping Classes

We now proceed by considering the case where the classes overlap in feature space, as shown in
the right part of Figure 5.3. One way to deal with this problem is to still maximize M , but allow
for some points to be on the wrong side of the margin. Thus, we introduce the appropriately
named slack variables ξ = (ξ1, ξ2, . . . , ξN). The constraints in (5.8) of the previous maximization
problem can then be modified to

yi(x
T
i β + β0) ≥M(1− ξi), (5.14)

for all i, ξi ≥ 0, and
N∑
i=1

ξi ≤ constant. Recalling that M is the width of the margin, the above

equation indicates that the overlap is measured in relative distance (which changes with M).
The value ξi in the constraint above is thus the proportional amount by which the point

falls on the wrong side of its margin. Points for which 0 < ξi ≤ 1 lie inside the margin, but on
the correct side of the decision boundary. Points for which ξi > 1 lie on the wrong side of the

decision boundary and are thus misclassified. By bounding the sum
N∑
i=1

ξi, we bound the total

proportional amount by which points fall on the wrong side. Since misclassification occurred

when ξi > 1, bounding the sum at the constant, say, K, i.e.
N∑
i=1

ξi ≤ K, bounds the total number

of misclassified training points at K.
As before, we want to maximize the margin. But we also want to softly penalize points that

lie on the wrong side of the margin boundary. We therefore minimize

C

N∑
i=1

ξi +
1

2
‖β‖2 (5.15)

under the constraints ξi ≤ 0 and yi(x
T
i β+β0) ≥M(1−ξi). Thus, the problem is again quadratic

with linear inequality constraints—i.e. a convex optimization problem. Written more formally
we have

10For a complete treatment, we refer to e.g. [1], [2].

65

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi (5.16)

subject to yi(x
T
i β + β0) ≥ 1− ξi (5.17)

and ξi ≤ 0 (5.18)

Here, the constant C > 0 is the cost parameter controlling the trade-off between the slack
variable penalty and the margin. The separable case considered earlier corresponds to the limit
C →∞.

As before, the problem can be solved using Lagrange multipliers.11

Solving the optimization problems yields the parameters β and β0 which define the optimal
separating hyperplane. As before, these parameters depend solely on the support vectors. Before,
the support vectors were those points that lay on the hyperplane. In this case of overlapping
classes, the support vectors are those points that lie on the edge of the margin or inside it. The
slack variables ξi determine whether the points are correctly classified; if 0 < ξi ≤ 1, then the
point xi is on the correct side of the boundary and thus correctly classified; if ξi > 1), then it is
misclassified.

Letting our parameter estimates be denoted β̂ and β̂0, the decision function for classifying
new observations is given by

Ĝ(x) = sign
[
f̂(x)

]
(5.19)

= sign
[
xtβ̂ + β̂0

]
(5.20)

ν-SVC

There exists an alternative, equivalent formulation of the support vector machine, known as the
ν-SVM. This is very similar to the above case (called C-SVC). The main difference is that the
cost parameter C has been replaced by ν.12 This parameter can be interpreted as both an upper
bound on the fraction of margin errors (i.e., points for which ξi > 0 and which thus lie on the
wrong side of the margin boundary) and a lower bound on the fraction of support vectors.

As mentioned earlier, only the support vectors contribute to the parameters defining the op-
timal separating hyperplane—that is, the decision boundary—and thus only the support vectors
are used for making predictions for new inputs.

The theory covered so far deals with support vector classifiers that find linear13 boundaries
in the input feature space. This linear method can be made more flexible by enlarging the
feature space via basis expansions such as polynomials or splines; that is, we transform the
input x via some function. With this basis function extension we will then be finding linear
boundaries in the enlarged space—which generally achieves better separation of the training
data [2]. These linear boundaries in the enlarged space translate to nonlinear boundaries in the
original space. All that needs to be done is selecting the basis functions hm(x),m = 1, . . . ,M ,
after which the procedure is the same as before. We then use the transformed input features

11Again, to keep this thesis from getting too long, we will not go into further details in this regard. For a full
treatment, we refer to e.g. [?], [1].

12Here, in the case of classification, the parameter ν in ν-SVC replaces the parameter C in C-SVC. For regression,
which we consider shortly, the parameter ν in ν-SVR replaces the parameter ε in ε-SVR.

13As seen from the linearity in xT β in (5.5).

66

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

h(xi) = (h1(xi), h2(xi), . . . , hM (xi)) , i = 1, . . . , N , and produce the nonlinear function f̂(x) =

h(x)T β̂ + β̂0. Points are then classified according to the sign of this function, i.e. by Ĝ(x) =

sign(f̂(x)) as before.
It can be shown that the transformation h(x) only appears through inner products. In fact,

h(x) does not need to be specified at all; a sufficient requirement is knowledge of the kernel
function

K(x, x′) = 〈h(x), h(x′)〉 , (5.21)

which computes inner products in the transformed feature space.14 The solution f̂(x) can now
be written

f̂(x) =

N∑
i=1

α̂iyiK(x, xi) + β̂0 (5.22)

In the SVM literature there are three popular choices for the kernel function K: the d-th
degree polynomial, the radial basis, and the neural network, respectively:

K(x, x′) = (1 + 〈x, x′〉)d (5.23)

K(x, x′) = exp
(
−γ‖x− x′‖2

)
(5.24)

K(x, x′) = tanh (κ1 〈x, x′〉+ κ2) (5.25)

As a final remark, let us briefly return to the cost parameter C. A large value of C will
discourage any positive ξi, i.e. points that lie far away from their margin, and thus lead to a
decision boundary (in the original space) that wiggles around the points in order to correctly
classify them. Such a wiggly decision boundary can be related to an overfit of the problem,
causing bad generalization performance on unseen (test) data. A small value of C will encourage
a small value of ‖β‖, which in turn causes f(x) and hence the decision boundary to be smoother.
As always, it is a balance between accuracy on the training data and generalization ability on
the test data. The optimal parameter value is often found via cross-validation, an important and
very usable concept often encountered in machine learning problems.

In the above we have considered SVM classification for the two-class problem. Indeed, SVMs
are fundamentally a two-class classifier, but it is possible to extend the framework to also tackle
multi-class problems with more than two classes. However, since the financial classification
problems posed and solved in this study are exactly of the two-class nature, we will not go into
further detail on the multi-class case.15 Instead, we will proceed with SVMs for regression tasks.

5.3.2 SVM Regression

We now extend the SVM framework to regression tasks with a continuous response. First, we
consider the linear regression model

f(x) = xTβ + β0, (5.26)

after which we will generalize to the nonlinear case. To estimate β, we minimize

14K should be a symmetric positive (semi-)definite function [2].
15For a treatment of multi-class SVMs, see e.g. [1].

67

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

H(β, β0) =

N∑
i=1

Vε (yi − f(xi)) +
λ

2
‖β‖2, (5.27)

where

Vε (yi − f(xi)) =

{
0, if |yi − f(xi)| < ε,

|yi − f(xi)| − ε, otherwise.
(5.28)

Vε is an ε-insensitive error function. As the expression shows, it gives zero error if the
absolute deviation between the prediction f(x) and the target y is less than ε, where ε > 0.
Thus, it basically ignores errors less than ε. (This is roughly analogous to the part in the SVM
classification above, where points on the correct side of the decision boundary—but far away
from it—were irrelevant and ignored in the optimization.)

Letting β̂ and β̂0 be the parameters that minimize H, the solution function can be shown16

to have the form

β̂ =

N∑
i=1

(α̂∗i − α̂i)xi (5.29)

f̂(x) =

N∑
i=1

(α̂∗i − α̂i) 〈x, xi〉+ β0, (5.30)

where α̂i, α̂
∗
i > 0 solve the quadratic programming problem

min
αi,α∗i

ε

N∑
i=1

(α∗i + αi)− yi
N∑
i=1

(α∗i − αi) +
1

2

N∑
i=1

N∑
k=1

(α∗i − αi) (α∗k − αk) 〈xi, xk〉 (5.31)

subject to the constraints

0 ≤ αi, α∗i ≤ 1/λ, (5.32)

N∑
i=1

(α∗i − αi) = 0, (5.33)

αiα
∗
i = 0. (5.34)

The nature of these constraints typically leads to only a subset of the solution values (α̂∗i − α̂i)
being nonzero. The data points xi corresponding to these nonzero solution values are exactly the
support vectors. Now, as in the above case of classification, the solution depends on the input
values xi only through the inner products 〈xi, xk〉. Hence, we can generalize this framework to
larger spaces by defining an appropriate inner product; that is, as we did in the end of the previous
section, by specifying the kernel function K that computes inner products in the transformed
feature space.

In this way, the framework is extended to the nonlinear case, since linear decision boundaries
in the transformed, larger feature space translates to nonlinear decision boundaries in the original

16See e.g. [2].

68

5.3. Support Vector Machines Chapter 5. Machine Learning Methods

space. Replacing the inner product in (5.30) with the kernel function K for inner products in
the larger space, the new decision function becomes

f̂(x) =

N∑
i=1

(α̂∗i − α̂i)K(x, xi) + β0 (5.35)

from which predictions for new inputs can be made.

ν-SVR

Earlier, for classification, we mentioned that an alternative, equivalent formulation existed;
namely, the ν-SVM. The same is true for this case of regression.17 The benefit, or advan-
tage, in the ν-SVM formulation is that the parameter governing the model complexity has a
more intuitive interpretation. Instead of fixing the width ε (the parameter worked with in the
above) of the insensitive region, we fix instead a parameter ν that bounds the fraction of points
lying outside the region. This gives us much better control of the model. It can be shown that
there are at most νN data points falling outside the insensitive region, while at least νN points
are support vectors lying either on the region or outside it [1].

We end our treatment here of the theoretical, methodological framework behind SVMs.18 In
the next section we highlight the strengths, weaknesses, and problems.

5.3.3 Strengths, Weaknesses, and Problems with SVMs

In our earlier treatment of SVM classification we highlighted that SVM classifiers are fundamen-
tally geared towards two-class problems. Although extensions have been made to multi-class
problems [1], these still present some problems and are in need of an optimal design [30]. How-
ever, since the financial classification problems posed and solved in this study are exactly of the
two-class nature, we need not worry about these issues.

Another limitation, perhaps the biggest one, lies in the choice of the kernel function K used
to define inner products in the larger, transformed space. Once the kernel is fixed, there really
remains just one user-specified parameter; the error penalty C. However, “the kernel is a very
big rug under which to sweep parameters ... [and] the best choice of kernel for a give problem is
still a research issue” [30].

[30] also lists some additional limitations of SVMs. Among these are the problems with
discrete data as well as the limitations in regards to speed and size, both in the training and
testing phase. Training for very large datasets (with millions of support vectors) is still an
unsolved problem. However, this will not be a problem for our case, since the size of the financial
datasets considered here will only reach the hundreds at the very maximum. The reason is that
stock data sufficiently far back in the past is deemed too old to have any significantly predictive
power and influence on the present and near future.

Despite these limitations—many of which will, in fact, not influence us significantly in this
study—SVMs are a class of very good and popular methods, with a number of advantages over
some other machine learning methods. The key features are the use of kernels, the absence of
local minima, the sparseness of the solution, and the capacity control obtained by optimising the
margin.

In regards to kernels, we highlighted a limitation above; however, the use of kernels, as
mentioned in the previous theoretical sections, is also a good thing in that it allows for extensions

17Here, for regression, the parameter ν in ν-SVR replaces the parameter ε in ε-SVR.
18For a more rigorous treatment with additional extensions, we refer to e.g. [1], [2].

69

5.4. Random Forests Chapter 5. Machine Learning Methods

to larger, higher-dimensional spaces and thus for nonlinear decision boundaries in the original
space.

The absence of local minima is a very interesting and extremely attractive feature that sets
SVMs apart from e.g. Artificial Neural Networks (ANNs). This comparison is actually very
interesting. Whereas the development of ANNs followed a heuristic path, with applications and
extensive experimentation preceding theory, the development of SVMs began with sound theory
followed by implementation and experiments. A significant advantage of SVMs is that, whilst
ANNs can get stuck in local minima, the solution to an SVM is global and unique. This is related
to the fact that SVMs use so-called structural risk minimization, while ANNs use empirical risk
minimization.19 SVMs also have a simple geometric interpretation and give a sparse solution, as
opposed to ANNs. Furthermore, unlike ANNs, the computational complexity of SVMs does not
depend on the dimensionality of the input space; that is, while ANN models become very complex
and thus take very long to train when met by sufficiently many input features, SVM models do
not suffer from this limitation. Finally, the reason that SVMs often outperform ANNs in practice
is that they deal with the biggest problem with ANNs; SVMs are less prone to overfitting and
thus often show better generalization ability and performance when met with unseen test data.
[34]

5.4 Random Forests

Random Forests (RFs) [35] are a type of ensemble learning method using a divide-and-conquer
approach to improve performance. The main principle behind ensemble methods as a whole
is that a group of “weak learners” (individual classifiers) can come together to form a “strong
learner.” Generally, the weak learners are individual classifiers, while the strong learner is ob-
tained when considering them collectively.

More specifically for Random Forests, the weak learners are so-called decision trees. The
Random Forest then averages the conclusions made by a number of these. For classification
problems, the ensemble of simple trees (called a committee) vote for the most popular class.
In regression problems, the Random Forest’s estimate of the dependent variable is obtained by
averaging the continuous response from each tree. Evidently, in order to understand Random
Forests, we must first understand the trees comprising them.

Tree-based models are simple but powerful, and moreover interpretable by humans. Generally,
they partition the feature space into rectangular regions and a assign a simple model—usually a
constant value or label—to each region. Several tree-based methods exist, with odd names such
as C4.5, ID3, etc., but we will use as a starting point the so-called Classification and Regression
Trees (CARTs), which are binary trees. Afterwards, we will then proceed with our main focus,
Random Forests, which solve a number of shortcomings and limitations of normal tree-based
models.

5.4.1 Classification and Regression Trees

To motivate the understanding of Classification and Regression Trees (CARTs), we consider an
example of a regression problem with a continuous response Y and inputs X1 and X2, each taking
values in the unit interval. The feature space is partitioned by lines parallel to the coordinate
axes. To avoid problems, we are restricted to recursive binary partitions, which means that

19It is beyond the scope of this study to go into further detail on these concepts. For a treatment of structural
and empirical risk minimization, we refer to e.g. [31], [34].

70

5.4. Random Forests Chapter 5. Machine Learning Methods

the feature space is not only partitioned by such parallel lines, but indeed partitioned into non-
overlapping rectangles. This is shown in the left part of Figure 5.4.

The approach is as follows. We first split the space into two regions, and model the response
by the mean of Y in each region. The variable and split-point are chosen to achieve the best fit.
Then one or both of these regions are split into two more regions, either of which may in turn
be split themselves, and so on. This process is continued until some stopping rule is applied.
In the left part of Figure 5.4 we first split the space by a vertical line at X1 = t1. The left
region X1 ≤ t1 is then split by a horizontal line at X2 = t2; and the right region X1 > t1 is
ended by a vertical line at X1 = t3. Finally, the rightmost region X1 > t3 is split horizontally at
X2 = t4. This partitioning creates the five regions R1, R2, . . . , R5, as shown in the figure. The
corresponding regression model predicts the response Y with a constant cm in region m, i.e,

f̂(X) =

5∑
m=1

cmI {(X1, X2) ∈ Rm} . (5.36)

This model can also be represented by the tree structure in the right part of Figure 5.4. It
is a binary tree since each node branches into two new ones. The full dataset sits at the top of
the tree. Observations that satisfy the condition at each node, or junction, are assigned to the
left branch, while the others are assigned to the right branch. The terminal nodes (also called
leaves) in the bottom of the tree correspond to the regions R1, R2, . . . , R5.

Figure 5.4: Example of CART partitioning. The left part shows a partitioning of a two-
dimensional input feature space by recursive binary splitting. The right part shows the cor-
responding tree structure.

As mentioned earlier, one of the key advantages of the recursive binary tree is its interpretabil-
ity; the feature space partition is fully described by a single tree. Of course, higher-dimensional
problems with more than two input features make it difficult to draw partitions such as that in
the left part of Figure ??. However, the binary tree representation in the right part of the figure
works in the same way. This representation is also very intuitive, mimicking a simple “if-then”
decision process.

Regression Trees

We now turn to the more general case of regression trees and how to “grow” them. Let our data
consist of N observations, each of which comprises p inputs (the features) and an output (the

response). Thus, the data can be described by {(xi, yi)}Ni=1, with xi = (xi1, xi2, . . . , xip). The
algorithm must automatically decide on the splitting variables and split points (the Xi’s and ti’s

71

5.4. Random Forests Chapter 5. Machine Learning Methods

in the above example), and also what topology, or shape, the tree should have. Suppose first
that we deal with a partitioning into M regions R1, R2, . . . , RM , and the response is modelled
as a constant cm in each region. This gives the model

f(x) =

M∑
m=1

cmI (x ∈ Rm) . (5.37)

Now, for a given observation, the difference between the true response and the result from our
model is clearly yi − f(xi). If we, as a criterion for the automatic decision of the tree topology,

adopt minimization of the sum of squared errors (SSE)
∑
i (yi − f(xi))

2
, then the best constant

ĉm is just the average of yi in region Rm,

ĉm = avg (yi|xi ∈ Rm) , (5.38)

which, in words, naturally reads the average of yi over all input observations xi falling in the
region Rm.

Now, finding the best binary partition in terms of minimum SSE is generally computationally
infeasible. Following [2], we therefore proceed with a “greedy” algorithm. Starting with all of
the data, we consider a splitting variable j and split point s (in our previous example, these
could correspond to e.g. X1 and t1), and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} , (5.39)

R2(j, s) = {X|Xj > s} . (5.40)

Evidently, if we look at the simple two-dimensional case as in the previous example, R1 would
be the left region in feature space and R2 the right region (granted, of course, that the splitting
variable was the one along the horizontal axis, i.e. X1). In any case, we now have two-half
planes, the separation of which is determined by j and s. Since we want a partitioning that
minimizes the sum of squared errors, we seek the splitting variable j and split point s that solve

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2

+ min
c2

∑
xi∈R2(j,s)

(yi − c2)
2

 (5.41)

The inner part is a minimization of the SSE in the two regions R1 and R2, respectively; that
is, for all observations xi in a particular region, we choose the constant c that minimizes the sum
of squared differences. The outer part is just a minimization over j and s, which then gives us
the optimal (in the sense of lowest total SSE) splitting variable and point. For any choice of j
and s, the inner minimization is solved by

ĉ1 = avg (yi|xi ∈ R1(j, s)) , (5.42)

ĉ2 = avg (yi|xi ∈ R2(j, s)) . (5.43)

For each splitting variable j, the determination of the split point s can be done very quickly,
and thus by scanning through all of the inputs, determination of the best pair (j, s) is now
feasible.

We have now found the best initial split. The next step is then to partition the data into the
resulting regions R1 and R2, and then repeat the splitting process on each of these two regions.
This process is repeated on all of the resulting regions.

72

5.4. Random Forests Chapter 5. Machine Learning Methods

However, since we cannot go on indefinitely, a question arises: For how long should we repeat?
Each split is like two new branches, so how large should we grow the tree? Clearly, in some limit
of sufficiently many splits, the regions will shrink, each holding none to very few points. Hence,
the model will fit the training data perfectly, but it comes at the cost of being able to generalize
on unseen test data. A large tree might therefore lead to overfitting. A small tree, on the other
hand, might not capture the important structure. Again, as with so many other methods, we
face a trade-off between a model that is too complex and prone to overfitting and one that is too
simple to uncover any important patterns in the data.

Tree size is a tuning parameter governing the complexity of the model, and the optimal tree
size should be adaptively chosen from the data. One approach would be to introduce some
threshold, errors below which are deemed insignificant; splits would then only be performed if
the decrease in SSE due to that split exceeds the threshold. Such a strategy is too short-sighted,
however, since a seemingly worthless split (small decrease in SSE) might lead to a good, valuable
split (large SSE decrease) below it. A better strategy is to grow a large tree and then perform
so-called cost-complexity pruning.20

Classification Trees

Above, we considered the regression problem where the response is continuous. We now proceed
with the case of classification where the target could be categorical and generally take on values
1, 2, . . . ,K. In fact, the only changes needed in the tree algorithm are related to the criteria for
splitting nodes and pruning the tree. Above, we used as a node impurity measure the squared
errorQm(T) defined by (??). However, since the output yi is no longer continuous, this measure is
not adequate for classification. Instead, we do as follows. For the (terminal) node m representing
the region Rm with Nm observations in it, let

p̂mk =
1

Nm

∑
xi∈Rm

I (yi = k) . (5.44)

Evidently, p̂mk denotes the proportion of class k observations in node m. In this node there
will probably be observations from a few different classes. But our model must for each node
classify observations into just one class. Thus, observations in node m are classified to the most
common class in that node; that is, the class in node m with the largest proportion of observation.
In formulaic terms, observations in node m are classified to class k(m) = arg maxk p̂mk. For a
measure Qm(T) of node impurity, it is then common to choose one of the following:

Misclassification Error: 1
Nm

∑
xi∈Rm

I (yi 6= k(m)) = 1− p̂mk(m)

Gini Index:
∑
k 6=k′ p̂mkp̂mk′ =

K∑
k=1

p̂mk (1− p̂mk)

Cross-entropy or Deviance: −
K∑
k=1

p̂mk log p̂mk

In the case of two classes, and if p is the proportion of observations in the second class, these
three measures are 1 −max (p, 1− p), 2p(1 − p), and −p log p − (1 − p) log(1 − p), respectively.
All three are quite similar in shape. However, whereas the misclassification error evidently has
a triangular, pyramid-like shape, the latter two are smooth and differentiable and thus more

20It is beyond the scope of this thesis to go into further detail. For a more rigorous treatment we refer to e.g.
[2], [35].

73

5.4. Random Forests Chapter 5. Machine Learning Methods

suitable for numerical optimization. Looking back at (??) and (??), we see that the node
impurity measure Qm(T) by the number NmL

and NmR
of observations in the two child nodes

created by splitting node m.
Finally, for growing the tree, it is recommended to use either the Gini index or cross-entropy.

Guiding the cost-complexity pruning, on the other hand, can be done by any of the three mea-
sures, though the misclassification rate is typically chosen [2].

Strengths and Issues of Decision Trees

Decision trees in general, including CARTs as we have considered here, have a number of advan-
tages and disadvantages.

The strengths include their intuitive structure and interpretability. Another advantage is that
they are applicable to both numerical and categorical data (i.e. for regression and classification
tasks, respectively), and that the frameworks are very similar. Finally, the methods are applicable
to large datasets.

Regarding disadvantages, one of the main problems with tree-based models is that they suffer
from instability and high variance. Often a small change in the data can result in very different
series of splits, making interpretation somewhat uncertain. The main reason for this instability is
the hierarchical nature of the tree-growing process; namely, the effect of an error in the top split
is propagated down to all of the consequent splits below it.21 Moreover, they have non-smooth
prediction surfaces/boundaries (as opposed to e.g. SVMs that we considered earlier), which is
especially a problem in regression tasks and can be seen by the constants cm that are clearly not
smooth (unless they are equal) across different regions Rm. Finally, when compared to other
machine learning methods, tree-based models often have little theoretical understanding in terms
of statistical learning theory.

For a further discussion of tree-based methods, we refer to e.g. [2], [1]. Now we proceed with
the method we will actually employ in the practical part of this study—namely Random Forests,
which solve many of the problems associated with decision trees such as CARTs.

5.4.2 Random Forests

Random Forests [35] belongs to the class of so-called bagging, or bootstrap aggregation techniques
that reduce the variance of an estimated prediction function. In fact, it is a substantial modifi-
cation of bagging that builds a large collection of de-correlated trees, and then averages them,
thereby alleviating the main shortcomings—instability and high variance and lack of smooth
decision boundaries—of single decision trees. For regression, we fit the same regression tree
many times on bootstrap-sampled versions of the training data, and then average the result. For
classification, a committee of trees each cast a vote for the predicted class.

The essential idea in bagging is to average many noisy but approximately unbiased models,
thus reducing the variance. If grown sufficiently deep, decision trees have relatively low bias,
while always being notoriously noisy. This makes them ideal candidates for bagging. Moreover,
since each tree generated in bagging is identically distributed (i.d.) [?], the expectation of an
average of B of them is the same as the expectation of any one of them. Consequently, the bias
of bagged trees is the same as that of the individual trees, and the only hope of improvement is
through variance reduction.

Now, to start off, consider a number B of independent and identically distributed (i.i.d.)

random variables, each with variance σ2. The variance of their mean is given by
1

B
σ2. If, on the

21The ensemble learning method of Random Forests alleviates this problem as we shall see shortly.

74

5.4. Random Forests Chapter 5. Machine Learning Methods

other hand, the variables are only identically distributed (i.d.) and have pairwise correlation ρ,
then the variance of the average is

ρσ2 +
1− ρ
B

σ2. (5.45)

Evidently, as B increases—corresponding to growing more trees—the second term vanishes.
But the first remains, causing the correlation ρ to limit the benefit of averaging. The idea in
Random Forests is then to reduce the variance through a reduction in the pairwise correlation.
Such a reduction in the correlation is achieved in the tree-growing process through random
selection of the input variables. More specifically, the approach when growing a tree is, before
each split, to randomly choose m ≤ p of the input variables as candidates for splitting. Typical
values for m are

√
p or even as low as 1.

Then, after B such trees have been grown—denoted by the set {T (x; Θb)}Bb=1—the random
forest predictor (for regression) is

f̂BRF (x) =
1

B

B∑
b=1

T (x; Θb). (5.46)

Here, Θb is a variable characterizing the bth random forest in regards to split variables, cut
points at each node, and terminal-node values. T (x; Θb) is the prediction of the bth tree at the
point x.

Now, recall that m of the input variables were randomly chosen as candidates for splitting.
Larger m will therefore make it more probable that the same input variables are chosen for
splitting, hence making the trees more alike—and more correlated. Conversely, reducing m will
thus reduce the correlation ρ between pairs of trees, and thereby reduce the variance of the
average as seen by (5.45).

Above, we have mainly considered regression. Regarding classification, each individual tree
makes a prediction in the form of a class. Each such prediction can be considered a vote for
that particular class. The ensemble of trees—the Random Forest—then collects the votes and
classifies the point into whichever class that received the most votes.

The Random Forest approach for classification and regression can be summarized by the
following algorithm [2]:

Random Forest Algorithm for Classification and Regression:

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a tree Tb to the bootstrapped data by recursively repeating the steps below
for each terminal node (leaf) of the tree until the minimum node size nmin is
reached.

i. Select m variables at random from the available p input features.

ii. Pick the best variable/split-point among the m variables.

iii. Split the node into two child nodes.

2. Output the ensemble of trees {Tb}Bb=1.

A prediction for a new point x is made by:

• Regression: f̂BRF (x) =
1

B

B∑
b=1

Tb(x)

75

5.5. Application to Financial Forecasting Chapter 5. Machine Learning Methods

• Classification: ĈBRF (x) = majority vote
{
Ĉb(x)

}B
b=1

, where Ĉb(x) is the class pre-

dicted by the bth tree.

In [35], the inventors of Random Forests make some recommendations for parameters:

• For classification, the default value for m is
√
p and the minimum node size is one.

• For regression, the default value for m is
p

3
and the minimum node size is five.

In practice, the best parameter values will depend on the problem, and they should be tuned.
As for the number of trees, B, bigger is generally better. It is common to start with e.g.

B = 100 and then increase it. Of course, as seen by (5.45), B should of course be sufficiently
large so as to make the second term in the variance of the average vanish.

Now, as mentioned above, the parameter m should be tuned, and as in many methods, this is
often achieved via cross-validation. However, Random Forests make another approach possible,
where the model is fit in just one sequence (as opposed to other methods requiring a model fit
followed by a separate cross-validation sequence). This is related to the method’s use of out-
of-bag (OOB) samples: For each observation xi in the training set, a random forest predictor
is built by averaging over all trees constructed not using xi. As it happens [2], this OOB error
estimate is almost identical to that obtained by n-fold cross-validation. Consequently, this OOB
error can be used instead of cross-validation to determine m, making it possible for Random
Forests to be fit in just one sequence with the cross-validation-alternative being performed along
the way.

Finally, as mentioned before, Random Forests addresses the main problems with CARTs listed
in section 5.4.1. This means that Random Forests really have very few shortcomings. Perhaps
more like a general lack of knowledge than a shortcoming per se, the method still has relatively
little theoretical understanding in terms of statistical learning theory, a feature it has inherited
from CARTs. As for advantages, however, there are plenty; these include a good performance
without much tuning, applicability to both numerical and categorical data (i.e. both regression
and classification tasks, respectively), simple parallelization, applicability to large datasets, and
optional probabilistic output.

The above treatment of decision trees and Random Forests is sufficient for our use of the
methods in this study, and we shall end the section here. For a more detailed analysis and
discussion of Random Forests, we refer to e.g. [2], [1], [35].

5.5 Application to Financial Forecasting

In this section we describe and discuss how the above machine learning methods can be applied
to the task of financial forecasting. Of course, the only limitation is imagination, and there will
be numerous such applications—some more plausible than others. We focus on the applications
that have been pursued in this study.

Neural Networks, Support Vector Machines, and Random Forests can all be used for both
classification and regression. In regards to classification, some methods generalize easier to
multi-class classification (e.g. RFs) than others (e.g. SVMs). But the two-class problem is
solidly supported by all of them.

Fortunately, the type of problems we encounter with the financial data in this study can
exactly be posed as two-class classification problem. To elaborate on this, consider a time series
of the price of a stock. Let us say that the prices are quoted on a daily basis. Then, since we
are considering classification, we label each data point; if the price closes at a higher level on the

76

5.5. Application to Financial Forecasting Chapter 5. Machine Learning Methods

current day than the previous day (i.e. the price has increased), the data point for the current
day is labelled “up”; similarly, if the price has decreased, the data point is labeled “down.” To
make it easier to program on a computer, these “up” and “down” labels can, without loss of
understanding, be denoted 1 and -1, or the binary 1 and 0.

We now have two groups, or classes. Next, we are interested in some features that might
have caused the stock price to go up or down. Of course, as mentioned earlier, there is clearly a
large degree of human psychology and other complex factors influencing this. So, we can either
assume that everything—including the sometimes erratic, hard-to-predict human behaviour—is
included in the raw and derived data; or we can put human psychology aside and assume that
the stock price movements are to some extent caused by certain features in the data. Regardless
of which way we choose, these features could be anything from the stock prices of the previous
days, the trading volume, the volatility, technical indicators, as well as fundamental data, etc.
In theory, these features can be anything that one can imagine to have the slightest influential
and predictive power. Indeed, if one considered the stock of, say, a company that specialized in
removing water from flooded houses, then weather data such as the daily precipitation (or, more
likely, the precipitation forecast) would be highly relevant as a potential feature to the input
data.

In any case, for each daily observation we now have a number of input features as well as the
label or class of that point. Our task is then to predict, or classify, tomorrow’s stock price move-
ment using an observation of input data. If the previous stock prices were deemed influential
for future stock prices, then one of the input features would be today’s stock price. Or, in our
weather company case, another feature could perhaps be today’s forecast for tomorrow’s precip-
itation rate. Finally, the observation’s label—i.e. to which class the data point of tomorrow’s
stock price belongs—is determined by the NN, SVM, or RF method.

Regarding regression, things are much the same as the classification case described above.
The main difference is that, instead of trying to predict the movement—i.e. “up” or “down”—of
the stock price, we attempt to predict a continuous value. Still, we do this using a number of
input features such as those described above.

77

Chapter 6

Analysis

This chapter contains our analyses, experiments, and results. We begin by analysing the distri-
butional properties and time series structure of the daily returns of the NASDAQ Index. Next,
we construct, select, and test ARMA-GARCH models for predicting the future prices and trends
in the NASDAQ Index. Then we turn our attention to the machine learning methods, where we
explore the workings of the models and analyse the effects of changing parameters. This gives a
better feel for the methods and also showcases one of the most important problems in machine
learning—overfitting. After this, we proceed with numerous experiments. Using mainly the ma-
chine learning methods, we investigate how well these perform in one-day ahead prediction of
stock prices. The experiments also examine the effects of varying different properties of the data
and predictors, etc.

6.1 Analysis of the NASDAQ Index and Initial Experi-
ments

In this section we analyse the NASDAQ Index1 for the 4-year time period from Jan 1 2010 to
Jan 1 2014. Using daily data, this gives us 1006 observations of prices (1005 for the logarithmic
return and up/down direction data).

First, we consider some statistical properties and explore selected aspects of the wide ar-
ray of raw and derived data. We then initiate the time series analysis by investigating both
quantitatively and qualitatively the potential presence of autocorrelation and conditional het-
eroscedasticity. Using the results from this analysis, we proceed by constructing and diagnosing
conditional a mean and variance composite model, and then it them for forecasting. Finally, we
evaluate the forecasting performances of numerous different models.

After this, we turn to the machine learning methods of Artificial Neural Networks, Support
Vector Machines, and Random Forests. For each method (and sub-methods: regression and
classification) we construct numerous models and evaluate their forecasting performances on
both training and test sets. Our main focus in these initial experiments is to analyse the applied
methods and investigate the effects of changing various parameters. The reasons for this are
multiple: to familiarize ourselves with the models and their behaviour; to see if their features
and results are consistent with what is expected from theory; to get a sense of the best parameter
values; and to investigate the models’ strengths and weaknesses, including e.g. the problems of
overfitting and underfitting.

1The ticker symbol for the NASDAQ Index is “ˆIXIC”

78

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

6.1.1 Descriptive Statistics

Our written MATLAB program computes some statistical properties for any given asset. Table
6.1 shows the results for the daily NASDAQ returns.

Range Mean Median Variance Skewness Kurtosis
[−0.071489; 0.051592] 0.000590 0.000899 0.000139 −0.409176 6.538752

Table 6.1: Statistical properties of the continuously compounded daily return (logreturn) of the
NASDAQ index for the 4-year period from Jan 1 2010 to Jan 1 2014. The unbiased skewness
and kurtosis are −0.409788 and 6.562415, respectively.

We see that the mean is smaller than the median, which implies left skewness. This is also
indicated by the negative skewness value. The kurtosis is 3 for a Gaussian distribution. The
larger value of 6.5 observed here indicates that the logreturn data are not Gaussian, refuting
the common assumption of normal distributed logreturns or, equivalently, lognormal distributed
returns. The larger kurtosis means that the data exhibit a larger peakedness than the normal
distribution as well as heavier tails, which we also explore visually later.

6.1.2 Exploratory Data Analysis

In this subsection we visually explore the daily NASDAQ data, focusing primarily on analysing
the distributional properties in more detail. First, however, we plot in Fig. 6.1 the closing stock
prices and logreturns for the NASDAQ Index.

02−Jan−2010 04−May−2011 02−Sep−2012 02−Jan−2014
2000

2500

3000

3500

4000

4500
Stock price for

I
XIC | 04−Jan−2010 − 31−Dec−2013

AdjClose

02−Jan−2010 04−May−2011 02−Sep−2012 02−Jan−2014
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Logreturn for

I
XIC | 04−Jan−2010 − 31−Dec−2013

logreturn

Figure 6.1: Adjusted closing prices (left) and continuously compounded returns (logreturn)
(right) for the NASDAQ Index for the 4-year period from 01/01/2010 to 01/01/2014.

The left plot in Fig. 6.1 shows an overall upward trend, especially during the last year. From
the right plot we see that the logreturns appear to fluctuate around a constant level (which is the
mean r̄ = 0.000590 shown back in Table 6.1). We also observe some large spikes, or deviations,
which correspond to the extreme events—large rises and drops in the price. As can be seen, these
volatile periods often gather in groups (a few of which are very conspicuous in the plot), hinting

79

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

at volatility clustering in the data. Section 6.1.3 gives a more detailed, quantitative analysis of
this phenomenon.

Now we turn to the qualitative distribution analysis. Fig. 6.2 shows a probability (P-P)
plot of the empirical data, along with some theoretical distributions. Plotting the cumulative
distribution functions against each other, a probability plot works as a qualitative test for a
particular distribution.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0.0001
0.0005
0.001

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

0.999
0.9995
0.9999

Data

P
ro

ba
bi

lit
y

 Probability Plot

Normal
Data
t
logistic

Figure 6.2: Probability plots including the normal distribution, t location-scale distribution, and
the logistic distribution.

Fig. 6.2 shows that the Normal distribution (straight dashed line) is a fine model for the
body (the range [0.1; 0.9] on the vertical axis) of the empirical distribution of the logreturn data.
But it fails to model the tails, lending much too low probabilities to extreme events (large gains
or losses). This is also what was indicated by the large kurtosis back in Table 6.1; there are
simply too many and too large fluctuations observed on the stock markets than expected under
the Gaussian distribution. This can have dire consequences in risk management; assuming a
Gaussian model significantly underestimates the potential risk associated with an investment.

The logistic distribution (gold curve) appears to be a better model than the Gaussian, fol-
lowing the data further along the tails. Still, the agreement is not fully satisfactory—especially
in the bottom/left tail. This is actually the most important part since it reflects the extreme
negative events—large drops and, potentially, market crashes. The inconsistencies thus render
the logistic distribution inadequate.

Lastly, we have included the t distribution (green curve) which turns out to provide a truly
remarkable model. With its heavier tails, it neatly accounts for the extreme events observed in
the NASDAQ data; even some of the largest price drops (see the three points in the bottom left
of Fig. 6.2) are very modelled.

80

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

10

20

30

40

50

60
Histogram of logreturn data & fitted distributions

Data
Normal
t
logistic

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

10
0

10
1

10
2

Histogram of logreturn data & fitted distributions

x

f(
x)

Data
Normal
t
logistic

Figure 6.3: Histogram (left) and empirical probability density function (right) of logreturn data
with fitted distributions. Left: normal scale. Right: log scale. In the right plot, the “squiggles”
at the bottom of each tail of the logreturn graph are due to the kernel smoothing method used
to obtain the empirical PDF and therefore not inherent in the real, observed data.

We continue the distribution analysis with Fig. 6.3. The left part shows a histogram of
the logreturn data along with fitted normal, t, and logistic distributions. The right part shows
the estimated empirical probability density function (PDF), also with the PDFs of the fitted
distributions. Both plots clearly show that the t distribution provides the best model for the
logreturn data; it better encompasses the peakedness of the data as well as the heavier tails.
Indeed, the t distribution fits the data very well down the right tail (representing large gains).
But the fit is not that perfect along the left tail, where we see the t distribution (still better
than the normal and logistic distribution, though) giving slightly lower probability densities
than actually observed; i.e. the risk of large losses is not perfectly, or sufficiently, modelled by
the t distribution. Related to the well-known and intuitive phenomenon of people acting and
reacting differently to large losses than large gains, this points in the direction of an asymmetrical
empirical distribution.

In conclusion, our quantitative and qualitative analyses provide empirical evidence that, in
contrast to common assumptions—the Gaussian is an inadequate model for the distribution of
stock returns. The t distribution is a better model that lends more realistic (higher) probabilities
to extreme events.2

6.1.3 Time Series Analysis

In this section we perform a traditional time series analysis of the daily NASDAQ logreturns,
specifically with a focus on autocorrelation and conditional heteroscedasticity (volatility cluster-
ing). The results and conclusions will be of valuable use for model construction and prediction
in the following sections.

Autocorrelation

Figure 6.4 shows the sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) for lags up to 100. Error bounds are plotted at 2σ = ±0.0631 to aid in determining

2An even better model yet might be given by the family of α-stable distributions, as explored in [46].

81

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

the significance. Both the ACF and PACF show several autocorrelation lags that stand out. As
it can be difficult to visually ascertain the exact lags, our program prints these to the screen.
The significant ACF lags (with absolute values greater than 2σ) are: 3, 5, 10, 22, 25, 39, 47,
48, 67, 88. The significant PACF lags are identical, but with two fewer values: 3, 5, 10, 22, 25,
39, 48, 88. Of course, one can argue whether data as far in the past as e.g. 88 days has any
sort of impact on the present values; however, these results could also point in the direction of
seasonality in the time series, and more specifically with a period of approximately 20.

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lag

S
a

m
p

le
 A

u
to

c
o

rr
e

la
ti
o

n

Sample ACF (logreturn series)

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lag

S
a

m
p

le
 P

a
rt

ia
l
A

u
to

c
o

rr
e

la
ti
o

n
s

Sample PACF (logreturn series)

Figure 6.4: Sample Autocorrelation Function (ACF) (left) and Partial Autocorrelation Function
(PACF) (right) of the NASDAQ logreturn data. Error bounds (blue) at 2 standard deviations.
Lags up to 100 are included. The lag-0 autocorrelation is 1 by definition. The y-axes have been
re-scaled to increase emphasis on the interesting (non-zero) lags.

The sample ACF and PACF mainly provides visual, qualitative support for the claim that
the logreturn data exhibits significant autocorrelation. We can analyse this in more detail by
performing a Ljung-Box Q-test. The Ljung-Box Q-test is a quantitative test for autocorrelation,
assessing the significance of autocorrelation at multiple lags jointly. The null hypothesis H0 is
that the first m autocorrelations are zero. [40] suggests a default value of m = logN , which
gives m = log(1005) ≈ 7 in our case. We have performed the test at the 5% significance level
for several different values of m (though not too large, since the test will otherwise lose power).
The results are shown in Table 6.2. Evidently, the Ljung-Box Q-tests all yield h = 1, whereby
the null hypothesis is rejected at the 5% level at all four lags. The conclusion is that there is
significant autocorrelation in the logreturn series. This is support against a fully random market,
and motivates the use of past values for predicting future values.

82

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

m χ2 Q p h
5 11.0705 20.1084 0.0012 1
10 18.3070 25.3054 0.0048 1
15 24.9958 27.8140 0.0228 1
25 37.6525 51.1039 0.0016 1

Table 6.2: Ljung-Box Q-test for autocorrelation. H0: First m autocorrelations are zero. Tests
are performed at the 5% significance level (α = 0.05) and for several different m. χ2 is the χ2

critical value, Q is the test statistic, p is the p-value. h = 1 rejects the null hypothesis, while
h = 0 indicates that H0 cannot be rejected.

Conditional Heteroscedasticity

We now turn to the investigation of conditional heteroscedasticity (ARCH effects), i.e. volatility
clustering. An indication of this feature is autocorrelation in the squared series, and so we plot
in Fig. 6.5 the sample ACF and PACF of the squared logreturn.

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample ACF (squared logreturn series)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Lag

S
a
m

p
le

 P
a
rt

ia
l
A

u
to

c
o
rr

e
la

ti
o
n
s

Sample PACF (squared logreturn series)

Figure 6.5: Sample ACF (left) and PACF (right) of the squared logreturn data. Error bounds
(blue) at 2σ = 0.0631.

As indicated by the left plot in Fig. 6.5, and specified exactly by the output of the written
program, the significant lags of the sample ACF count almost all lags from 1 to about 50, as well
as a few after this. The significant lags for the PACF are fewer. In any case, though, the plots
of the sample ACF and PACF provide clear visual support for significant autocorrelation in the
squared series, and thus volatility clustering.

But, let us again assess this more quantitatively. This can be done via the Ljung-Box Q-test
from before, only now we naturally apply it to the squared logreturn data. The results are shown
in Table 6.3. The tests for the different values of m give p-values of zero (and hence h = 0),
indicating that the null hypothesis of no autocorrelation in the squared series (i.e. of no ARCH
effects, or volatility clustering, in the logreturn series) is rejected at the 5% level at all four lags.
The conclusion is that there is significant autocorrelation in the squared series, and hence that
the observed logreturn data exhibits conditional heteroscedasticity, i.e. volatility clustering.

Conditional heteroscedasticity (volatility clustering) can also be checked via Engle’s ARCH

83

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

m χ2 Q p h
5 11.0705 314.7891 0 1
10 18.3070 479.4108 0 1
15 24.9958 560.6133 0 1
25 37.6525 651.8233 0 1

Table 6.3: Ljung-Box Q-test for autocorrelation in squared series, i.e. for ARCH effects (volatility
clustering) in normal series. H0: First m autocorrelations are zero. Significance level: α = 0.05 =
5%. χ2 is the χ2 critical value, Q is the test statistic, p is the p-value. h = 1 rejects the null
hypothesis, while h = 0 indicates that H0 cannot be rejected.

test. This tests the null hypothesis H0 of no conditional heteroscedasticity against the alternative
of an ARCH(n) model with n lags (which is equivalent to a GARCH(n/2,n/2) model for even
n). The test results are shown in Table 6.4. In all three cases of n = 2, 4, 6, the null hypothesis
is soundly rejected (h = 1, p = 0) in favor of the respective ARCH(2), ARCH(4), and ARCH(6)
alternatives. The F -statistics for the tests are much larger than the critical values from the χ2

distribution with n degrees of freedom. Of course, since tests were conducted for different n, and
since all tests rejected the null hypothesis, the question arises of which of the three alternatives
to choose. Since we are interested in simple, parsimonious models (to avoid unwarranted com-
plexity), we keep with the ARCH(2) model, which is equivalent to a GARCH(1,1) model. In any
case, though, the conducted ARCH tests conclude that there is significant volatility clustering
in the logreturn series.

n χ2 F p h
2 5.9915 157.6105 0 1
4 9.4877 175.0208 0 1
6 12.5916 181.0270 0 1

Table 6.4: Engle’s ARCH test for conditional heteroscedasticity (volatility clustering). H0: No
ARCH effects. Ha: ARCH(n) model with n lags. Significance level: α = 0.05. χ2 is the χ2

critical value, F is the test statistic, p is the p-value. h = 1 rejects the null hypothesis H0 in
favor of the alternative Ha, while h = 0 indicates that H0 cannot be rejected.

This concludes our analysis of autocorrelation and conditional heteroscedasticity in the logre-
turn series of the NASDAQ Index. We have found qualitative and quantitative evidence of both
significant autocorrelation and significant volatility clustering. The presence of these phenomena
motivates the use of past data to predict future data, as is done in the many sections to come.
We begin in the following section with conditional mean and variance models.

6.1.4 ARMA-GARCH Models

In the previous section we saw that the logreturns of the NASDAQ Index exhibited both sig-
nificant autocorrelation and volatility clustering. This makes it plausible to try to model the
mean return with conditional mean models (e.g. ARMA) and the volatility, or variance, with
conditional variance models (e.g. ARCH or GARCH).

84

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

Modelling the Conditional Mean

We begin by modelling the conditional mean, for which we choose the autoregressive moving-
average (ARMA) model (the AR and MA models are both subclasses of this more general
model). It should be noted that an ARMA model for the logreturn data (which is stationary) is
equivalent to an ARIMA model for the non-stationary price data. For now, we will not include
exogenous covariates (leading to e.g. ARMAX and ARIMAX models) but rather stick with the
ARMA/ARIMA models that use lagged response data.

In order to identify the best lags for an ARMA model for the logreturn data, we can consult the
sample ACF and PACF plots in Fig. 6.4 in the previous section. The specific significant lags can
be hard to read off from the plots, but the written program outputs these values, which were also
presented in the discussion of the plots. However, there appears to be an awful lot of seemingly
significant lags, and it is not certain that we will obtain an optimal model by just choosing some
or all of these lags (indeed, we would surely obtain a bad, complex, highly non-parsimonious
model by choosing all of them). This does not render the ACF and PACF plots useless—far
from it—but just means that they are used for the general assessment of autocorrelation, and
not the specific identification of the lags to be used in the ARMA model.

Instead, we pursue another approach for identifying the best lags p and q in the ARMA(p, q)
model. Namely, we fit several models with different lag choices, thus searching the lag parameter
space for the combination that gives yields the optimal model. There is some ambiguity inherent
the word ’optimal’; we need a measure to assess the adequacy, or goodness, of the model. As
discussed in Section 4.4.1, we choose as measures the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). We then fit all combinations of lags p = 1, . . . , 10 and
q = 1, . . . , 10 (a total of 100 models), compute the AIC and BIC for each, and finally select the
optimal model as the one yielding the lowest AIC and BIC3. This is easily done via the attached
MATLAB program, which outputs matrices (the rows and columns of which indicate the lags p
and q) of AIC and BIC values, and then finds the minimum value and its index (which is the
optimal combination (p, q)). The results are:

Minimum AIC = −5430.4 obtained for p = 6, q = 3.

Minimum BIC = −5392.2 obtained for p = 1, q = 1.

Evidently, the two information criteria point at different optimal models; the AIC chooses
an ARMA(6, 3) model, while the BIC chooses an ARMA(1, 1) model. The ARMA(1, 1) model
is the more parsimonious choice, and we will mainly focus on this one. However, for the sake of
curiosity, we will not entirely dismiss the ARMA(6, 3) model suggested by the AIC. In fact, the
BIC value for this model is −5382.3, which is one of the lowest values next after the minimum
listed above.

Modelling the Conditional Variance

We now turn to modelling the conditional variance using the ARCH/GARCH-type of models
discussed in Section 4.7. The sample ACF and PACF in Fig. 6.5 show very significant volatility
clustering. This was further supported by the Ljung-Box Q-test and Engle’s ARCH test. The
conditional heteroscedastic nature of the data makes it crucial to properly model the variance
rather than just take it as being constant.

Regarding identification of the best parameters for the GARCH(u, v) model, we can turn back
to the ARCH tests conducted in the previous section. The test results concluded that the null

3If the AIC and BIC choose different models we may select the more parsimonious choice.

85

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

hypothesis was rejected in favor of a variety of ARCH models, the simplest, most parsimonious
one of which was an ARCH(2) model, equivalent to a GARCH(1,1) model. This gives some
initial incentive for choosing this as our conditional variance model.

However, let us still pursue the same approach as for the ARMA model above, searching
the parameter space for the best combination u, v that minimizes the AIC and BIC. Using all
combinations of u = 1, . . . , 4 and v = 1, . . . , 4, our MATLAB program yields the following results:

Minimum AIC = −5622.1 obtained for u = 1, v = 2.

Minimum BIC = −5602.8 obtained for u = 1, v = 2.

The AIC and BIC agree that the optimal model is a GARCH(1, 2). This is very close to the
GARCH(1,1) model argued for above, only with one additional GARCH lag. Even though the
AIC/BIC-based parameter space search yielded GARCH(1,2) as the best model, let us investigate
whether we can be without this extra GARCH lag and thus make do with a GARCH(1,1) model.
For this purpose, we conduct a likelihood ratio test to compare the restricted, nested GARCH(1,1)
model to the unrestricted, extended GARCH(1,2) model. The degrees of freedom for the test are
1, due to a difference of 1 in the number of parameters. The test, performed at the 5% significance
level, yields a very low p-value of 0.00078126. The null GARCH(1,1) model is therefore rejected
in favor of the GARCH(1,2) alternative.

In conclusion, a GARCH(1,2) appears to be the optimal choice for a conditional variance
model.

However, as discussed in Section 4.7, there are conditional heteroscedastic models that are
even more advanced than GARCH. Among these we find the E-GARCH, which, as opposed to
GARCH, accounts for the so-called leverage effect4 often observed in financial time series5. As
done in the attached program, we fit both an E-GARCH(1,1) and E-GARCH(1,2) model and
perform an AIC/BIC-based comparison of these models to each other as well as the hitherto
optimal GARCH(1,2) model. The results are:

GARCH(1,2): AIC = −5622.1, BIC = −5602.1

E-GARCH(1,1): AIC = −5669.4, BIC = −5650.2

E-GARCH(1,2): AIC = −5665.4, BIC = −5636.6

Both E-GARCH models yield lower AIC and BIC values than the GARCH(1,2) model. The
lowest values are obtained by E-GARCH(1,1), which will therefore be our choice.

In summary, the optimal conditional mean and variance models are ARMA(1,1) and E-
GARCH(1,1).

Building the Composite Model

We now build the ARMA(1,1) and E-GARCH(1,1) composite model and fit it to the data. The
resulting parameter estimates are shown in Table 6.5.

For an E-GARCH(1,1) model, the GARCH and ARCH coefficients are expected to be positive,
while the leverage coefficient is expected to be negative (due to the fact that large unanticipated
shocks should increase the variance). The parameter values obtained here are in excellent agree-
ment with these expectations. Generally, everything looks good for the E-GARCH model, with

4The leverage effect covers the feature of the asset reacting differently to large negative changes than positive
changes.

5We also observed this for the NASDAQ data when we back in Fig. 6.3 found evidence for an asymmetric
distribution.

86

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

Model Parameter Value Std. Error t statistic
ARMA(1,1) Constant 0.000862368 0.000601128 1.43458

AR{1} -0.774204 0.388892 -1.99079
MA{1} 0.75321 0.406287 1.85389

E-GARCH(1,1) Constant -0.515226 0.0833525 -6.18129
GARCH{1} 0.943026 0.00925724 101.869
ARCH{1} 0.127586 0.0308727 4.13264
Leverage{1} -0.191869 0.0232118 -8.26601

Table 6.5: ARMA(1,1) and E-GARCH(1,1) composite model parameters. The notation is such
that AR{1} denotes the coefficient to the variable with lag 1. Leverage is the new parameter
introduced with the E-GARCH model.

low relative standard errors and hence large t-statistics indicating statistical significant param-
eters. As for the ARMA(1,1) model, the t-statistics very close to 2 place the parameters just
on the border of statistical significance. However, this also has to do with MATLAB’s internal
way of handling ARMA and ARIMA models. As mentioned earlier, there are two ways to go
about the model construction process; (1) manually difference the non-stationary price data to
obtain e.g. the stationary logreturn data and then use an ARMA(p, q) model, or (2) use an
ARIMA(p, d, q) model with a differencing parameter of d = 1 on the original price data. MAT-
LAB’s internal programming is such that the maximum likelihood parameter estimates obtained
using the second approach are more robust than those obtained using the first approach. We
should try it just to make sure. This has been done in the attached MATLAB program, where
we fit an ARIMA(1,1,1) (with differencing parameter d = 1) and E-GARCH(1,1) to the original
closing price data. Indeed, as outputted by the program, the t-statistics for the AR1 and MA1
coefficients are −2.58177 and 2.39499, respectively, both of them now greater than 2 (as opposed
to −1.99 and 1.85 as seen in Table 6.5) and thus statistically significant. As for the other param-
eters, the ARMA/ARIMA Constant remains only borderline statistically significant, while all
the E-GARCH(1,1) parameters still have very large t-statistics and are thus highly significant.

Model Diagnostics

It is now time to scrutinize more thoroughly the constructed composite model. For this purpose,
we infer the residuals and perform diagnostic checks. The residuals r are standardized to r̂ = r/V ,
where V is the inferred conditional variance. Several diagnostics plots are shown in Fig. 6.6.

87

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 100 200 300 400 500 600 700 800 900
−4

−3

−2

−1

0

1

2

3
Standardized Residuals

V
a

lu
e

Time (trading days from 04−Jan−2010)
0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3 Conditional Variance

V
a

lu
e

Time (trading days from 04−Jan−2010)

−4 −3 −2 −1 0 1 2 3
0

20

40

60

80

100

120

Value

C
o
u
n
t

Standardized Residuals Histogram

−4 −3 −2 −1 0 1 2 3

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

0.999
0.9995

0.9999

Data

P
ro

b
a
b
ili

ty
Probability Plot of standardized residuals

Normal

Data

t

Figure 6.6: Diagnostic checks for ARMA(1,1) and E-GARCH(1,1) composite model. Top left:
Time plot of standardized residuals. Top right: Time plot of conditional variance. Bottom left:
Histogram of standardized residuals. Bottom right: Probability plot of standardized residuals.

The top right plot in Fig. 6.6 shows a conditional variance that is far from being constant.
We observe several peaks, the most dominant one of which occurs after about 400 trading days.
This corresponds to the large and sudden drop shortly after May 2011 that we also saw in the
earlier Fig. 6.1. These increases in variance indicate increases in volatility, and it is important
to note their durations and positions; namely, we observe periods of large variance followed by
periods of low variance. The positions, or occurrences in time, of these periods agree with the
corresponding periods of high and low volatility observed in the logreturn plot in the earlier Fig.
6.1.

The top left plot in Fig. 6.6 shows a time plot of the standardized residuals. The values range
from about -4 to 3. The crucial thing to notice is that there are quite a lot of these extreme
event (especially negative values, corresponding to large price drops). This is also seen by the
histogram in the bottom left of Fig. 6.6, where we observe a somewhat large amount of ±2σ
events. In our model, these residuals, or innovations/shocks, are by default modelled by the

88

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

Normal distribution. However, the amount of extreme events significantly exceeds the amount
expected under a standard Normal distribution. This indicates that the Gaussian might not be
the best model for the innovation distribution, a claim that is further supported as we turn to
look at the bottom right plot in Fig. 6.6. This shows a probability plot of the standardized
residuals (blue) along with the Normal distribution (black) and t distribution (red). Along the
right tail of extreme positive events (large increases), the data points are placed just between
the Normal and t distributions, making either model somewhat plausible in this region. Both
distributions model the data perfectly in the “body”, with the t distribution performing better
as we slowly move down and to the left. As we move further along the left tail, the Normal
distribution is way off, significantly underestimating the probability of extreme negative changes
and thus, in financial jargon, the risk of large losses! This is very crucial in risk management, and
the Normal distribution’s dramatic shortcoming in this regard renders it wholly implausible for
practical use. The t-distribution, however, performs remarkably well, closely following the data
points along the left tail—and even almost correctly modelling the most extreme −4σ event (it
slightly overshoots and ascribes a larger probability than observed, but better an overestimation
of risk than an underestimation!)

In conclusion, we find that the Normal distribution fails to properly model the large values
of the standardized residuals, while the t distribution does a very good job.

We therefore fit an ARMA(1,1) and E-GARCH(1,1) composite model with a t distribution
for the innovation process. The resulting model parameters are shown in Table 6.6.

Model Parameter Value Std. Error t statistic
ARMA(1,1) Constant 0.0014165 0.000645252 2.19527

AR{1} -0.711422 0.468072 -1.5199
MA{1} 0.68691 0.484904 1.41659
DoF 6.90726 1.99892 3.45551

E-GARCH(1,1) Constant -0.504189 0.104268 -4.83551
GARCH{1} 0.945376 0.0115045 82.1741
ARCH{1} 0.132051 0.0425107 3.10631
Leverage{1} -0.219608 0.0323908 -6.77994
DoF 6.90726 1.99892 3.45551

Table 6.6: Parameters for ARMA(1,1) and E-GARCH(1,1) composite model with a Student’s
t innovation distribution. DoF is the number of degrees of freedom of the t distribution. The
notation is the same as in Table 6.5

The coefficient estimates change slightly when the t distribution is used for the innovations.
The new model fit has one additional parameter; the t distribution degrees of freedom. As can
be seen in Table 6.6, the estimated degrees of freedom are relatively small (about 7), indicating
significant departure from normality.

Next, we perform an AIC/BIC-based comparison of the new model with a t innovation process
to the old model with a Gaussian innovation process. The results are:

ARMA(1,1) and E-GARCH(1,1) model with

- Gaussian innovation: AIC = −5666.3, BIC = −5632.7

- t innovation: AIC = −5685.6, BIC = −5647.2

The second model achieves lower (more negative) AIC and BIC values than the first, sup-
porting our use of a t innovation process in the ARMA(1,1) and E-GARCH(1,1) composite

89

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

model.

Forecasting

Recall from earlier that the NASDAQ dataset analysed and used in all of the above comprised
1006 observations of daily prices (1005 for the logreturns). The data have been split into a
training set (90%) and a test/validation set (10%). For constructing the conditional mean and
variance models above, we have solely made use of the training set. The test set thus contains
wholly unused, unseen data—as if it was future data that we did not know. In this way, the test
data can be used to validate and assess the forecasts we are about to make.

The ARMA-GARCH framework provides an easy way of doing multi-period ahead fore-
casting, which we begin with. Our ARMA(1,1) and E-GARCH(1,1) composite model is used
to forecast both the price, logreturn, and conditional variance over a period equal to that of the
test set (i.e. 100 days). The results are shown in Fig. 6.7.

0 200 400 600 800 1000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Forecasted Returns

95% Interval

Forecast

Actual

0 200 400 600 800 1000
2000

2500

3000

3500

4000

4500

Forecasted Price

95% Interval

Forecast

Actual

0 200 400 600 800 1000
0

0.5

1

1.5
x 10

−3 Forecasted Conditional Variances

Inferred

Forecast

Figure 6.7: Forecasted returns (top left), prices (top right), and conditional variances (bottom)
by the ARMA(1,1) and E-GARCH(1,1) composite model. The unused, unseen test data have
been included in the top plots to assess forecasting performance.

90

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

It should be noted that the ARMA model is a linear time series model. It models the
conditional mean of the data, which is why its forecasts are linear in nature.6 Over multiple
periods, the model is obviously improper for trying to predict the specific returns or prices and
their fluctuating nature. But this does not make it useless at all; indeed, as shown in Fig. 6.7, it
provides a prediction of the general trend. In addition, we have also calculated error bounds on
these forecasts. As can be seen in the top left plot in Fig. 6.7, the actual, observed returns (gray)
fit rather well inside the 95% error bounds (red). The top right plot is very interesting, showing
the forecast of the conditional mean of the price (the width of the forecast interval grows in time
due to the price process being non-stationary, as opposed to the stationary logreturn series). The
forecast clearly indicates an upward, increasing trend. Looking at the actual data from the test
set, we observe, of course, some fluctuations—but most importantly the presence of an actual
upward trend! Trend-wise, the forecast thus fits very well with the actual, observed data.

In addition to this qualitative assessment of the forecasts, we can also evaluate the model’s
performance in a more quantitative manner. Equipped with the actual data from the test set,
denoted yi for the ith observation (in a total of N observations), and the forecasts from the model,
denoted ỹi, we can compute a variety of error measures. From the numerous choices available,
we have chosen the popular mean-squared error (MSE) and the mean-absolute percentage error
(MAPE):

MSE =
1

N

N∑
i=1

(ỹi − yi)2 (6.1)

MAPE =
100

N

N∑
i=1

| ỹi − yi
yi
| (6.2)

We have chosen both a non-percentage and a percentage-based measure on purpose. The
MSE clearly depends on the type and order of magnitude of the data. It is not so adequate if
the magnitude of the data varies a lot over the N observations considered (which it might do
for stock prices).7 However, it is a common measure with a good interpretability. Due to its
percentage nature, the MAPE is not affected by such scale changes. But this measure may prove
inadequate if the data are very small (such that the denominator is close to zero).

However, since we performed multi-step ahead prediction (with linear forecast curves) and
mainly focused on trend prediction, such error measures are not proper to use here unless one
compares the predicted trend with a quantity measuring the observed trend.

The error measures are more suitable for assessing the performance of one-step ahead
prediction, which is the type of prediction we are most concerned with in all of the following.
We have implemented it by forecasting over a single period (in the test set) at a time, instead of
forecasting over the all periods in the test set collectively (e.g. over 100 periods as in the above
example).

The results for our ARMA(1,1) and E-GARCH(1,1) composite model are shown in Fig. 6.8.8

6Oscillations may be included in seasonal versions of the models.
7Of course, this can be resolved using scaled, stationary prices. But this also reduces the interpretability.
8Note that the price data has been smoothed using a 5-period Exponential Moving Average. We discuss the

reason in detail in Section 6.1.6. Smoothing the prices also makes the forecasts a type of trend prediction, but in
a more precise, refined way than we saw earlier.

91

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 20 40 60 80 100
3600

3700

3800

3900

4000

4100

4200
ARMA−GARCH performance on TEST set

Time (trading days/weeks/months)

S
to

ck
 p

ric
e

Target
Predicted

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Forecasted Conditional Variances

Inferred
Forecast

Figure 6.8: One-period ahead forecasting results for the ARMA(1,1) and E-GARCH(1,1) com-
posite model. Left: Stock price (zoomed in on the unseen test set). Right: Conditional variance.

The left plot of the predicted and actual stock prices zooms in on the test set, which is the
part of interest. As opposed to the previous Fig. 6.7, the forecast is no longer straight; or,
actually it is straight in that it is made up of linear pieces, one for each period. We see that
the predictions follow the actual data extremely well, but mainly so when the price is trending
and headed in a particular direction. When the price makes a sudden movement in the opposite
direction (at e.g. 10 and 40 days on the x-axis), our model stays in its original direction—keeping
its momentum, so to speak—resulting in a wrong prediction.

Looking at the right plot, the forecasted conditional variance has also changed shape (com-
pared to Fig. 6.7) now that we predict only one step ahead. It is interesting to see how the
forecast (in red) retains the oscillatory behaviour observed in the inferred values between periods
700-850 on the x-axis.

We can evaluate the stock price predictions quantitatively the above error measures. Another,
very interesting, error measure that has become available now that we perform one-step ahead
forecasting is the Hit Rate accuracy, which measures the percentage of correct movement direction
(up/down) predictions. The results in this case are:

MSE = 90.32

MAPE = 0.188 %

Hit Rate = 68.04 % (66 out of 97)

The MSE indicates that the squared errors of our model’s predictions are, on average, 90
units (US dollars for the NASDAQ Index). So the average error is of the order

√
90 ≈ 9.5 USD.

The MAPE value indicates that, on average, our model shoots wrong by about 0.19 %. The Hit
Rate says that our model correctly predicted the movement direction 66 times (out of the 97 test
set observations), corresponding to 68 %. These results are actually not bad. Later, in Section
6.2, we shall compare them to the results obtained using other methods.

6.1.5 Neural Network Models

As mentioned in the theoretical section 5.2, the type of neural networks employed in this study
are non-linear autoregressive with exogenous (external) input (NARX networks). The reason

92

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

is that these networks, compared to other types, are highly adequate for time series prediction
because of their ability to more easily utilize the temporal nature of the data and its potential
autocorrelations. Moreover, they also allow for the inclusion of other time series as exogenous
input.

When it comes to neural networks, there are numerous parameters and options that can be
tweaked and adjusted in the attempt to find the optimal model with the very best performance.
For example, there are the questions of the type and amount of data to use, including what
to choose for the number of delays of the response data and the external inputs, how to split
the data into training/testing/validation samples, how to pre-process it, how to construct the
network and choose the number of layers and hidden neurons, and then there is the choice of
training algorithm, stopping criteria, performance measures, and so on and so forth. With all
these aspects to consider, all this freedom of choice, the task of building a neural network can
suddenly seem quite overwhelming. It would probably be a vain goal to try to cover all of these
aspects, varying each and every one of them in turn in an endless search for the perfect model.
Indeed, doing that is beyond the scope of this thesis. We will approach the task in a somewhat
more humble manner, starting small and then gradually broadening our reach. In more specific
terms, we approach the above points and options as follows:

Data type and amount: To begin with, we will naturally be considering the same NASDAQ
data as used and analysed in the previous sections. For details, see Section 6.1.

Inputs: The analysis in Section 6.1.3 concluded that there is significant autocorrelation and
that lagged response data may thus be plausible predictors. Regarding exogenous inputs,
we have no a priori knowledge of which combinations will work. Here, we consider an
arbitrary combination. Later, in Section 6.2, we try different variations.

Data splitting: Drawing inspiration from similar research (see 1.3) and common practice, we
manly stick with a 90%/10% split into training and testing data, respectively.9

Data pre-processing: Before being fed into the network, the data will be normalized to zero
mean and unit variance and scaled into the range [−1, 1].

Network architecture: We will use neural networks just a single hidden layer.10 The number
of hidden neurons will either be varied, or it will be the object of optimization using methods
such as e.g. simulated annealing or a simpler search in parameter space. As default values,
we can draw inspiration from the different rules of thumb (see Section 5.2.4) stating that
the number of hidden neurons should be e.g. nh =

√
nino or nh = 0.75ni or nh = 2ni + 1,

where ni and no is the number of inputs and outputs, respectively.

Training algorithm: Several choices exist for training algorithms, as discussed in Section 5.2.
Here, we narrowed down the possibilities through a comparison between each algorithm’s
merits and shortcomings and the particular application. Since our focus is the regression
problem of the NASDAQ data, and since we would like algorithms that are not too slow,
we will mainly be concerned with the Levenberg-Marquardt algorithm.11

9Note that the training data, comprising the first 90% observations of the entire data, is itself split into three
parts (training/testing/validation) during the training of each neural network. The remaining 10%, which we call
the test data, is wholly unused in the model building process (as if it didn’t exist, like future, unknown stock
prices), and is solely used for evaluating the forecasting performance of the network.

10It has been shown empirically that one, and at most two, hidden layers generally yield the best performance;
networks with more than two hidden layers will generally not improve the results. [10],[61].

11Since Levenberg-Marquardt may converge too quickly, we will keep the Conjugate Gradient, Bayesian Regu-
larization, and Adaptive Learning Rate algorithms as second options.

93

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

Stopping criteria: For designing each network, the training data is split in three parts (train-
ing/testing/validation). Training is stopped when the error on the validation set fails to
decrease for six iterations.

Performance measures: The network performances and forecasting abilities will primarily be
evaluated based on the Hit Rate accuracy (percentage of correct predictions of up and
down movements) and the mean-squared error (MSE).

Training the First Neural Network

Now it is time to get to work with training the first neural network. We wish to predict the daily
NASDAQ price yt, and as input we will choose a number of past observations yt−1, . . . , tt−d. We
do not know the best value for this number of delays/lags d, but the autocorrelation analysis in
6.1.3 may be of some help. Here, we saw that there were significant autocorrelation at lags 3, 5,
10, etc. Later, we will try to use some of these very specific lags, but for this first experiment
we set d = 3, using lags from 1 to 3.

We will try to include exogenous inputs straight from the start. However, we have no a priori
knowledge of which inputs will work best. Therefore, for this initial experiment, we will just go
ahead and choose two technical indicators; Momentum and Relative Strength Index (RSI). We
will also use d = 3 lagged values of these inputs.

Then comes the question of the number of hidden neurons. This depends on the problem and
the amount of inputs and outputs. Here, we use ni = 9 inputs (3 lags for the response data plus 3
lags for each of the two exogenous inputs) and no = 1 outputs (the response data one step in the
future). With these values, the rules of thumb mentioned above say that nh =

√
nino =

√
9 = 3,

or nh = 0.75ni = 0.75 ∗ 9 ≈ 7, or nh = 2ni + 1 = 2 ∗ 9 + 1 = 19. They clearly do not agree.
Too few may lead to the network not learning at all, while too many may lead to overfitting and
hence poor generalization. Since complex problems (such as ours) require more hidden neurons,
we may lean towards one of the larger values. However, instead of merely picking a value, we can
also apply optimization techniques to find the value that minimizes some error measure, here
the MSE, of the network performance on the training set. We have included a procedure for this
in the attached MATLAB program. For this particular case, the lowest MSE was obtained for
nh = 23.12

We are now ready to train the network, which will be done using the Levenberg-Marquardt
algorithm and the training set comprising 90% of the total data. As mentioned earlier, during
network training, to ensure good generalization, the training data is itself divided into three
parts (training/validation/testing) with a ratio of 70%/15%/15%, respectively. Fig. 6.9 shows
several interesting plots that can be used to investigate the training process.

12It is important to note that the results from network training—and thus from this optimization—may vary
due to the random initialization of the network weights and biases.

94

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

10
5

10
6

Best Validation Performance is 1404.1652 at epoch 11

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

 (
m

se
)

17 Epochs

Train
Validation
Test
Best 2500 3000 3500

2500

3000

3500

Target

O
ut

pu
t ~

=
1*

T
ar

ge
t +

 −
12

Training: R=0.9974

Data
Fit
Y = T

2500 3000 3500

2500

3000

3500

Target

O
ut

pu
t ~

=
0.

99
*T

ar
ge

t +
 4

0

Validation: R=0.99446

Data
Fit
Y = T

2500 3000 3500

2500

3000

3500

Target
O

ut
pu

t ~
=

0.
99

*T
ar

ge
t +

 2
6

Test: R=0.99281

Data
Fit
Y = T

2500 3000 3500

2500

3000

3500

Target

O
ut

pu
t ~

=
1*

T
ar

ge
t +

 2
.3

All: R=0.99615

Data
Fit
Y = T

0

50

100

150

200

250

300

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
25

2.
8

−
23

2.
1

−
21

1.
5

−
19

0.
8

−
17

0.
1

−
14

9.
5

−
12

8.
8

−
10

8.
2

−
87

.5
2

−
66

.8
6

−
46

.2

−
25

.5
4

−
4.

88
5

15
.7

7

36
.4

3

57
.0

9

77
.7

5

98
.4

1

11
9.

1

13
9.

7

Training
Validation
Test
Zero Error

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800
Response of Output Element 1 for Time−Series 1

O
ut

pu
t a

nd
 T

ar
ge

t

100 200 300 400 500 600 700 800
−400

−200

0

200

E
rr

or

Time

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors
Response

Targets − Outputs

−20 −15 −10 −5 0 5 10 15 20

0

200

400

600

800

1000

Autocorrelation of Error 1

C
o

rr
el

at
io

n

Lag

Correlations
Zero Correlation
Confidence Limit

−20 −15 −10 −5 0 5 10 15 20
−1000

−800

−600

−400

−200

0

200

Correlation between Input 1 and Error 1 = Target 1 − Output 1

C
or

re
la

tio
n

Lag

Correlations
Zero Correlation
Confidence Limit

Figure 6.9: Plots for evaluation and diagnostics of network performance in the training process.
Top left: Performance plot of MSE vs. epochs/iterations. Top right: Regression plot of output
vs. targets. Middle left: Histogram of errors. Middle right: Plot of network response and actual
target, including errors. Bottom left: Error correlation. Bottom right: Input-error correlation.

The top-left plot in Fig. 6.9 shows the mean-squared error (MSE) vs. the epoch/iteration for

95

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

both the training, validation, and test sets (all three are parts of the main training set comprising
90% of the data). The result is reasonable if the final MSE is relatively small, if the test and
validation errors look similar, and if no significant overfitting occurred by the iteration at which
the validation error is lowest. Of course, the MSE depends on the scale and type of the data,
but we see that a minimum (possible local, though) has been found. Moreover, the validation
(green) and test (red) curves follow each other almost identically up until epoch 9, after which
there is only slight deviation. But the test curve does not increase significantly (only very little)
before the validation curve, which indicates that no significant overfitting has occurred. We also
see that the early-stopping criteria was met; training stopped after 17 epochs/iterations when
the validation error (obtaining its minimum at epoch 11) failed to decrease for 6 iterations.

The top-right plot in Fig. 6.9 shows a linear regression between the outputs and the targets.
This can be used to determine how well the network outputs match the actual targets. A perfect
fit is when the data (black circles) fall along the 45-degree line, giving a correlation coefficient of
R = 1. In this case, we have R ≥ 0.99 for both the training, validation, and test subdivisions,
indicating excellent agreement between estimated outputs and actual targets.

The middle-left plot in Fig. 6.9 is a histogram of the error et = yt− ỹt, where y and ỹ denote
the target and output, respectively, and t is the time. The error histogram can give an indication
of outliers, i.e. data points where the fit is significantly worse than for the majority of the data.
Here, we see that there are about six cases in total where the network missed the actual target
by roughly e = 100 or more. And then there is one extreme case (furthest to the left in the plot)
where the network overshot by about 250. This extreme case corresponds to the sudden drop in
the NASDAQ index around September 2011 (about 400 trading days after our starting date of
January 1st 2010), which we also saw and discussed earlier in Fig. 6.1.

The middle-right plot in Fig. 6.9 shows the outputs, targets, and errors, and colors the data
depending on their subpart in the main training set. It can be difficult to distinguish what
happens in the top part, but the bottom part captures all of the essential things; the errors
fluctuate up and down (corresponding to the network underestimating and overestimating the
price, respectively). A large negative error stands out just before a time of 400; this is exactly
the extreme case described in the previous paragraph.

The bottom-left plot in Fig. 6.9 shows the autocorrelation13 of the error. This describes
how the errors are related in time. For a perfect model there would only be one non-zero
value occurring at lag 0. In this case, all lags but four—lags −8,−2, 2, 8 (effectively only two
lags because they are symmetric and negative lags bear no meaning in that they refer to the
future)—have correlations that fall within the confidence interval. This indicates an adequate
model, but possibly with room for improvement via e.g. adding more inputs, increasing the
number of delays of the inputs, and/or increasing the number of hidden neurons.

The bottom-right plot in Fig. 6.9 shows the input-error cross-correlation. This describes
how the errors are correlated with the exogenous input. For a perfect model, all correlations are
zero. In this case, all correlations fall within the confidence limits, indicating an adequate model.
Again, however, there seems to be room for improvement.

With the network trained, i.e. the weights and biases determined, we now feed the entire
training data into the network to calculate the estimated outputs. These outputs are then com-
pared to the actual, observed data. For performance measures we consider the mean-squared
error (MSE) and the percentage of correct up/down movement predictions (Hit Rate). The re-
sults are:

Network performance on training set (890 observations):

13See Section 4.1.2 for more on autocorrelation.

96

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

MSE = 1019.6

Hit Rate = 57.3% (510 out of 890)

This performance on the training set can be assessed more qualitatively by plotting the
predicted outputs and the actual targets (stock prices), as done in Fig. 6.10.

0 100 200 300 400 500 600 700 800 900
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Time (trading days)

S
to

ck
 p

ric
e

Network performance on TRAINING set − Predicted and actual stock prices

Actual
Predicted

Figure 6.10: Neural network performance on TRAINING set. Vertical axis: Stock price. Hori-
zontal axis: Time (trading days). Red curve: Predicted Prices. Blue curve: Actual prices.

The network seems to very accurately predict the data, which was, of course, also the data
used to train it. But this also has to do with the viewpoint—that we are considering a frame
of 890 points in time. When zooming in to take a closer look, the small deviation become more
apparent. Overall, though, the network predictions follow the actual training data very closely.
However, these results can only be used to evaluate the training, not the network’s ability to
generalize. For this purpose, we must turn to the test set.

The test set that will now be used is the one comprising 10% of the total data. This test data
has not been used whatsoever for purposes of training the network and building the prediction
model. It is entirely unused and unseen—effectively unknown, just as future data is. Of course,
we know it here, but for the sole reason of being able to evaluate the network’s predictive
performance on unseen data (otherwise we would have had to wait for the days and weeks to
pass, and for the future data to slowly become available). Lastly, it is important to note that we
are performing predictions one period ahead. The results for the test set are:

Network performance on test set (99 observations):

MSE = 18015.4

Hit Rate = 48.5% (48 out of 99)

The MSE is extremely high and the Hit Rate a disappointing 48.5%. Thus, the network
predicted slightly less than half of the up/down movement directions. From a practical point of

97

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

view, these results are very unsatisfactory. But from a research point of view, they are interesting.
However, this is just one, simple neural network model, and we must wait to draw any conclusions
as to the predictability of the markets, the efficient market hypothesis, etc. For now, we turn to
Fig. 6.11 which visualizes the performance on the test set.

0 10 20 30 40 50 60 70 80 90 100
3400

3500

3600

3700

3800

3900

4000

4100

4200

Time (trading days)

S
to

ck
 p

ric
e

Network performance on TEST set − Predicted and actual stock prices

Actual
Predicted

Figure 6.11: Neural network performance on TEST set. Vertical axis: Stock price. Horizontal
axis: Time (trading days). Red curve: Predicted Prices. Blue curve: Actual prices.

Here we can better see the network’s somewhat poor prediction ability on the unseen test
data. It performs poorly in the beginning and even worse after about 50 trading days, where
the predictions generally fall further and further below the actual data. However, regarding the
overall shape and movement, the network predictions closely resemble the real data—with one
important caveat, though; the network is “too late” by what appears to be one trading day.14

Evidently, the network shows mediocre performance on the training set and furthermore
seems unable to generalize to the unseen test data where it lacks predictive ability. This could
be an indication of either overfitting, a suboptimal network architecture with too few hidden or
input neurons, or exogenous inputs and lagged responses that were simply not predictive enough
for the purpose. Finally, it could also be caused by the noisy, erratic nature of daily data—
something we investigate and discuss in e.g. Section 6.1.6. There, we argue, among other things,
that data smoothed using moving averages is a much more plausible object of prediction.

In this case of daily data we also tried different training algorithms. Generally, the Levenberg-
Marquardt is the quickest—so quick, even, that it often converges too fast and yields poor
performance. Conjugate Gradient and Momentum with Adaptive Learning Rate are slower and
do not significantly improve results. We find that Bayesian Regularization is generally the most
stable and robust, albeit being somewhat slow. But none of the training algorithms give rise
to significantly better results on the daily data. We also tried varying the number of hidden
neurons, and found only slightly better performance when using additional neurons.

Thus, regardless of the training algorithm and number of hidden neurons, the neural network
has a difficult time handling daily data. The main problem is that the noisiness and apparent

14This is actually a somewhat common phenomenon when applying neural networks for predicting financial
time series, as seen in some of the research articles mentioned in Section 1.3.

98

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

randomness of the data cause the network to use today’s price as the prediction for tomorrow.
This is also very clear in Fig. 6.12 (especially the right plot), where we show the training and test
performances of a neural network trained with Bayesian Regularization and 50 hidden neurons
(the figure caption also includes the MSE and Hit Rates). This is good support for the claim
that noisy, erratic daily data is implausible to use for prediction, and that we should pursue
smoothed data or data with other frequencies instead.15 Of course, the possibility still exists
that our suboptimal results for daily data are caused by input features that lack predictive power.

0 100 200 300 400 500 600 700 800 900
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Time (trading days)

S
to

ck
 p

ric
e

NN performance on TRAINING set − Predicted and actual stock prices

Actual
Predicted

0 20 40 60 80 100
3500

3600

3700

3800

3900

4000

4100

4200

Time (trading days)

S
to

ck
 p

ric
e

Network performance on TEST set − Predicted and actual stock prices

Actual
Predicted

Figure 6.12: Training (left) and test (right) predictions for daily NASDAQ data of an ANN
trained with Bayesian Regularization and 50 hidden neurons. Training performance: MSE =
997.02, Hit Rate = 52.36%. Test performance: MSE = 900.37, Hit Rate = 49.49%. The problem
with using noisy daily data is clearly apparent from the fact that the predictions are shifted by
one time step.

Finally, an aspect of neural networks that is sometimes an advantage, but in this case a
shortcoming, is the random initialization of weights and biases. This can cause networks with
identical architectures, inputs, etc. to end up in different local error minima and thus give
different results. This is a major drawback of neural networks compared to the machine learning
methods, Support Vector Machines and Random Forests, that we also consider in this study.
However, the problem may be mended by e.g. training multiple networks on the same data and
choosing the one with the best training performance (e.g. lowest MSE), or perhaps averaging the
outputs of multiple networks.16 We have implemented these features in our attached MATLAB
programs, and it is something we will experiment with in the later experiments in Section 6.2.
We have also implemented cross-validation to find the optimal number of hidden neurons.

6.1.6 Support Vector Regression Models

In the general case of SVM regression (SVR) there are two recurrent parameters, C and γ. C
is the cost parameter, while γ appears in the kernel function. The specific cases of ε-SVR and
ν-SVR introduce the respective extra parameters ε and ν. Moreover, as yet another feature to
adjust and experiment with, there is the kernel function itself.

15We give a thorough analysis and discussion of this in Section 6.1.6.
16Training multiple networks and averaging their outputs would be a sort of ensemble method like Random

Forests.

99

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

Investigating the Effect of γ (and C)

We begin by considering the effect of changing γ, and to a lesser extent C, all the while holding
everything else constant. More specifically, we consider ε-SVR with fixed ε = 0.1 and ν-SVR
with fixed ν = 0.5, keeping the kernel as a radial basis function17. The model attempts to predict
tomorrow’s price y(t+ 1) using prices with 3 lags and a number of technical indicators also with
3 lags.18 For the specific indicators, see Table 6.7 where we also show the results.

ε-SVR ν-SVR
C γ MSE train HR train MSE test HR test MSE train HR train MSE test HR test
1 0.001 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %

0.01 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %
0.1 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %
1 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %
5 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %
10 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %
100 1077.9 56.02 % 2283.5 48.49 % 835.93 60.41 % 2241.1 50.51 %

10 0.001 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
0.01 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
0.1 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
1 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
5 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
10 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %
100 747.46 58.94 % 2286.1 52.53 % 244.05 80.20 % 2232.6 51.52 %

1000 0.001 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
0.01 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
0.1 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
1 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
5 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
10 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
100 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %

Table 6.7: SVM performance results for varying γ (and, to a smaller extent, for varying C). All
other parameters have been held constant; ε = 0.1 for ε-SVM regression (leftmost columns) and
ν = 0.5 for ν-SVM regression (rightmost columns). The kernel used in all cases was the radial
basis function (RBF) kernel. The particular SVM model attempts to predict the future stock
price y(t+ 1) using as predictors the past 3 prices as well as the technical indicators Momentum,
RSI, Chaikin Oscillator, Price Rate of Change, and Volume Rate of Change, also with lags up
to 3.

Evidently, varying γ seems to have no effect on the performance of either type of model; in
Table 6.7, for each value of C considered, the performance measures are exactly the same for the
different values of γ. For this reason, γ is not as important a parameter to adjust as some of
the others, whereby we, in the analyses to come, will keep it fixed at its default value γ = 1/ni,
where ni is the number of input features, or predictors.

As for the cost parameter C, which was also varied a bit, we found that large C significantly
increased the computation times, especially for ν-SVR. Although this also resulted in improved
training performance, the hit rates for the unseen test data were unchanged while the MSE
actually increased. This remarkable training performance and disappointing test performance

17Through numerous tries we found that the RBF kernel was generally faster (computation time) and yielded
better results than the alternatives of linear, polynomial, and sigmoid kernels.

18This particular combination of inputs was not chosen for any specific reason, but only to get started with the
analysis.

100

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

observed for very large C is a strong sign of overfitting—a sign that fits well with the theory (Sec-
tion 5.3) which exactly says that the increased penalty (from large C) might lead to overfitting
(while small C might result in underfitting). Thus, due to its clear effect on the performance and
relation to the overfitting problem, C is an important parameter to be monitored and adjusted.
Let us therefore further analyse its effect on the performance.

Investigating the Effect of C (and ε and ν)

We now vary C, and to a lesser extent ε and ν for ε-SVR and ν-SVR, respectively. Other
parameters are held constant, i.e. γ = 1/ni, and the model and kernel function are the same
as above. The results are shown in Table 6.8. We found that varying ε higher than 0.2 only
worsened the results. In addition, reducing it below 0.01 gave even better training performances
for increasing C, but also even worse test performances (i.e. even more overfitting).

ε-SVR ν-SVR
C ε MSE train HR train MSE test HR test ν MSE train HR train MSE test HR test
0.01 0.01 37998 50.84 % 9380.7 49.49 % 0.1 110860 52.42 % 22655 51.52 %
0.1 5577 52.19 % 3670.3 52.53 % 14243 52.31 % 5252.3 53.54 %
0.5 1670.9 57.71 % 2677.3 47.47 % 2989.6 53.21 % 2793.8 49.49 %
1 837.75 61.75 % 2222.1 47.47 % 1806.9 53.21 % 2400.2 50.51 %
5 355.09 76.04 % 2197.7 49.49 % 861.81 58.04 % 2253.4 47.47 %
10 244.21 80.54 % 2231.5 52.53 % 655.6 61.19 % 2303.6 54.55 %
100 51.746 90.89 % 2822.1 46.46 % 173.5 78.85 % 2753.1 50.51 %
1000 12.834 93.25 % 3432.7 46.46 % 0.15147 99.78 % 3715.6 46.46 %
0.01 0.1 39974 49.04 % 9797.9 50.51 % 0.5 53122 48.71 % 12405 52.53 %
0.1 5958.2 51.52 % 3731.9 52.53 % 5833.9 51.74 % 3683.2 52.53 %
0.5 1865.3 53.21 % 2740.8 51.52 % 1682.1 55.01 % 2730.7 50.51 %
1 1077.9 56.02 % 2283.5 48.48 % 835.93 60.4 % 2241.1 50.51 %
5 774.16 58.83 % 2236.5 51.52 % 357.43 73.34 % 2183.9 51.52 %
10 747.46 58.94 % 2286.1 52.53 % 244.05 80.2 % 2232.6 51.52 %
100 732.52 59.51 % 2312.5 52.53 % 48.611 96.4 % 2797.7 51.52 %
1000 732.52 59.51 % 2312.5 52.53 % 0.14213 99.78 % 3718.5 45.45 %
0.01 0.2 59373 50.17 % 13571 54.55 % 0.9 38447 50.62 % 9461 49.49 %
0.1 13463 52.19 % 5120.5 53.54 % 5574.2 52.08 % 3664.9 52.53 %
0.5 7694.4 51.31 % 3632.2 48.48 % 1697.5 58.72 % 2673.3 45.45 %
1 7601.1 52.53 % 3544.6 50.51 % 855.54 64.23 % 2255.8 46.46 %
5 7598.3 52.53 % 3544.3 50.51 % 360.9 78.63 % 2206.7 52.53 %
10 7598.3 52.53 % 3544.3 50.51 % 251.79 84.48 % 2224.9 52.53 %
100 7598.3 52.53 % 3544.3 50.51 % 48.758 96.63 % 2799.4 51.52 %
1000 7598.3 52.53 % 3544.3 50.51 % 0.14214 99.78 % 3724.1 46.46 %

Table 6.8: SVM performance results for varying C and, to a lesser extent, for varying ε and ν for
ε-SVR (leftmost columns) and ν-SVR (rightmost columns), respectively. All other parameters
have been held constant; γ = 1/ni, where ni is the number of input features. The kernel was kept
as the radial basis function (RBF). In terms of inputs/predictors, the particular SVM model is the
same as that described in 6.7; i.e., the predictors are the past 3 prices and the technical indicators
Momentum, RSI, Chaikin Oscillator, Price Rate of Change, and Volume Rate of Change, also
with lags up to 3 (in total, giving ni = 18).

It can be difficult to discern the results and make conclusions by looking at the raw data in
Table 6.8. We therefore visualize the results in Fig. 6.13, where we have included additional
values for ε and ν.

101

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

10
−2

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

C

T
ra

in
in

g
M

S
E

Training MSE vs. C for ε−SVR with different ε

ε = 0.01
ε = 0.05
ε = 0.1
ε = 0.2
ε = 0.5
ε = 0.9

10
−2

10
−1

10
0

10
1

10
2

10
3

10
3

10
4

10
5

C

T
es

t M
S

E

Test MSE vs. C for ε−SVR with different ε

ε = 0.01
ε = 0.05
ε = 0.1
ε = 0.2
ε = 0.5
ε = 0.9

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C

T
ra

in
in

g
M

S
E

Training MSE vs. C for ν−SVR with different ν

ν = 0.01
ν = 0.05
ν = 0.1
ν = 0.2
ν = 0.5
ν = 0.9

10
−2

10
−1

10
0

10
1

10
2

10
3

10
3

10
4

10
5

C

T
es

t M
S

E

Test MSE vs. C for ν−SVR with different ν

ν = 0.01
ν = 0.05
ν = 0.1
ν = 0.2
ν = 0.5
ν = 0.9

Figure 6.13: Effect on SVM regression MSE performance when varying C (and ε or ν). Top
plots show ε-SVR training (left) and test (right) performances against C for different ε. Bottom
plots show ν-SVR training (left) and test (right) performances against C for different ν.

What we see from Table 6.8, but even better so from Fig. 6.13, is the following:

• For ε-SVR, increasing C yields better training performance (lower MSE)—but only up to
a point (C ≈ 1), after which the performance generally remains the same. (For ε = 0.01, it
seems that the training MSE continues to decrease, but this will also even out eventually.)
The test performance shows similar behaviour, evening out after C ≈ 1. It is interesting to
see that, for ε = 0.01, the test performance began to increase again for larger C—a clear
indication of overfitting. The overfitting occurring for large C can also be seen from the Hit
Rate (accuracy) data in Table 6.8, where we sometimes observe exceptionally good training
performances (hit rates upwards of 90%) but with corresponding test performances that
are very, very bad. Finally, smaller (larger) ε generally seem to shift the MSE performance
curves down (up), although the test results become very much alike when ε is below 0.2.

• For ν-SVR, increasing C also improves training performance (lower MSE)—and, as op-
posed to ε-SVR, it does not seem to even out; the MSE just decreases further. The test
performance also improves for increasing C, at least initially. It flattens out between C ≈ 1
and C ≈ 10, after which the MSE increases again. The fact that the test MSE increases for

102

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

very large C, all the while the training MSE continues to decrease, is a clear sign of over-
fitting. As explained in the previous paragraph, this overfitting can also be seen from the
Hit Rate data in Table 6.8. The performance is almost unchanged for different ν (except
for ν = 0.01 (blue), which seems to shift the test curve to the right).

Thus, regardless of ε or ν, varying C shows the trade-off between a model with mediocre
training and test performances (underfitting) and one with great training performance but poor
test performance (overfitting). This agrees perfectly with the theory, from which we know that
larger C increases complexity and thus the risk of overfitting. For ε-SVR, we also see that low
ε (here 0.01) makes the overfitting even more pronounced, which also agrees with ε-SVR theory
[29].

Finally, we have implemented cross-validation in our MATLAB programs for finding the
optimal SVM parameters.

Qualitative Performance Assessment

Above, we have only considered the numerical quantities for performance, i.e. MSE and Hit Rate.
It would be very interesting to inspect more closely the actual predictions of a particular model,
and get a more visual, qualitative feel for the performance. This is done in Fig. 6.14 where
we plot the training and test predictions for the (arbitrarily chosen) ν-SVR model with a radial
basis function kernel, C = 10, γ = 1/ni = 1/12 = 0.0833, ν = 0.9, and Price (also the response
variable), Momentum, RSI, and Price Rate of Change with lags up to 3 as inputs/predictors
(giving ni = 4 ∗ 3 = 12). Besides showing the plots, our MATLAB program also outputs the
performance results shown in Table 6.9.19

MSE Hit Rate
Training 578.18 64.12 % (570 out of 889)
Test 829.94 61.62 % (61 out of 99)

Table 6.9: Performance results for the SVM model described in the text above. The correspond-
ing predictions are shown in Fig. 6.14.

19Note that the model employed here achieves better overall training and test performances than the models in
e.g. Table 6.8. The reason is that these previous models employed the Volume Rate of Change indicator which
suffered under an extreme outlier. A single observation was thus the cause for the large magnitude of the test
errors. Not using the Volume Rate of Change as an input, this new model does not suffer under the extreme
outlier and the test MSE value is significantly lower than the values in Table 6.7 and 6.8.

103

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 100 200 300 400 500 600 700 800 900
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800
SVM performance on TRAINING set

Time (trading days/weeks/months)

S
to

ck
 p

ric
e

Target
Predicted

0 20 40 60 80 100
3500

3600

3700

3800

3900

4000

4100

4200
SVM performance on TEST set

Time (trading days/weeks/months)

S
to

ck
 p

ric
e

Target
Predicted

Figure 6.14: Training (left) and test (right) predictions (red curves) for the SVM model described
in the text above. The actual targets—NASDAQ daily prices—are included (blue curves) for
comparison and performance assessment. The horizontal axis is time in trading days, and the
vertical axis is the daily closing price.

First off, the parameters of the model seem to give a good balance in terms of the underfitting-
overfitting problem discussed earlier; from Table 6.9 we see that the training and test MSEs and
Hit Rates are very close, indicating that overfitting has not occurred. Indeed, the Hit Rates of
64% and 62% obtained here are much better than those shown in Tables 6.7 and 6.8 (to be fair,
though, these previous results only served to analyse the effect of varying parameters).

Turning to the left plot in Fig. 6.14, we see that the predictions for the training data
practically lie atop the actual targets (as they should, since the model was trained on this data).
At first glance, the predictions for the unseen, unused test data in the right plot also seem to
very good, following the actual data closely. However, there is a crucial deviation; namely that
the predictions appear lagged, or shifted, compared to the targets. And upon further scrutiny,
one notices that they are lagged by exactly one period—in this case one day. Essentially, apart
from a few exceptions, this means that the model’s prediction of y(t + 1) is basically just y(t),
or, put another way, the model predicts that tomorrow’s price will just be today’s price. We saw
the same for neural networks in the previous section.

Had it not been for this lag, or shift, the predictions would have been exceptionally good
(too good perhaps). Of course, wanting one’s predictions to be good, the first reaction to this
phenomenon is that something is wrong with the code. However, we have thoroughly perused
our programs several times over, finding no bugs that may lead to this behaviour.

Example with a Smooth and Noisy Sine Wave

To be entirely sure that nothing is wrong with our SVM programs and implementations, we
have tried using some other, perhaps simpler, data. More specifically, we will try to predict the
sine function f(x) = sin(x). In the attached MATLAB program we generate the target data for
x ∈ [0, 100] in steps of ∆x = 0.1. To predict sin(x) we will employ a ν-SVR model with a radial
basis function kernel, C = 1, γ = 1/ni = 1/5 = 0.2, ν = 0.5, and which uses as inputs/predictors
the past 5 values, i.e. sin(x− i∆x) with i = 1, . . . , 5 (giving ni = 5).20 The model is trained on

20This scenario corresponds to predicting next period’s (e.g. day’s) stock price using the prices for the past 5
periods (e.g. days).

104

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

the first 90% of the data and tested on the remaining (unseen) 10%. The results of predicting
this smooth sine wave are shown in Fig. 6.15.

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
SVM performance on TRAINING set for f(x) = sin(x)

x

si
n(

x)

Target
Predicted

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1
SVM performance on TEST set for f(x) = sin(x)

x

si
n(

x)

Target
Predicted

Figure 6.15: SVM model performance for predicting the smooth sine wave f(x) = sin(x) for
x ∈ [0, 100] in steps of ∆x = 0.1. Left: performance on training set. Right: performance on
unseen, unused test set.

Our MATLAB program also outputs the MSE (and Hit Rates, but these are not so informative
for the smooth sine wave). The MSEs are 0.000000 and 0.000158 for the training and test set,
respectively. These errors are very low, indicating perfect performance on the training set and
near-perfect performance on the test set. This is also what we see in Fig. 6.15; in the left plot
(training set), the predictions lie atop the targets; in the right plot (test set), we observe only
a minuscule deviation near the top of the function. In conclusion, the model perfectly predicts
the smooth sine wave, and there seems to be no bugs or errors in our code which could cause a
shift, or lag, of the predictions as we saw earlier in Fig. 6.14.

For the sake of curiosity, let us try to add random noise to the sine wave. The model
parameters and inputs are the same as before, and we train it on 90% of the data and test it on
the remaining 10%. The training and test MSEs are 0.009888 and 0.011724, respectively, and the
Hit Rates are 55% and 51% (they were both 100% for the smooth sine wave). The predictions
and actual targets are shown in Fig. 6.16.

105

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 100 200 300 400 500 600 700 800 900
−1

−0.5

0

0.5

1

1.5
SVM performance on TRAINING set for f(x) = sin(x) + ε

x

f(
x)

Target
Predicted

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5
SVM performance on TEST set for f(x) = sin(x) + ε

x

f(
x)

Target
Predicted

Figure 6.16: SVM model performance for predicting the noisy sine wave f(x) = sin(x) + ε for
x ∈ [0, 100] in steps of ∆x = 0.1, and where ε is random noise. Left: performance on training
set. Right: performance on unseen, unused test set.

From the quantitative performance measures we see that the performance, albeit good, is not
as perfect as for the smooth sine wave. This is supported qualitatively by Fig. 6.16. Especially
interesting is the right plot showing the performance on the unseen test data. Before, for the
smooth sine wave, we saw near-perfect agreement between the predictions and targets. Here,
however, with the inclusion of noise, there are clear deviations throughout. What is even more
interesting, though, is the nature of these deviations; upon close inspection, one can see that
the predictions (red curve) are in many cases shifted to the right. In particular, for many of the
noisy “spikes” in the target data21, the model predicts a similar spike—only it does so too late
(e.g. at x ≈ 15, 80).

Thus, most often, the model just retains the direction, or momentum so to speak, of the
observed data; when everything is headed the same way, the predictions reflect this. But then,
when a sudden move in the opposite direction appears (a noisy spike), the model just keeps the
original direction. Only after the next period, when the spike has happened and the model knows
this, the model uses this information for its prediction, resulting in a predicted spike occurring
one period after the actual, observed spike. Basically, the model uses for its prediction the most
recent difference in response value f(x). This is exactly what we discussed earlier and saw in Fig.
6.14 for the daily NASDAQ data! But this was not the case for the smooth sine wave, i.e. in the
absence of noise. So, our sine wave examples indicate that the inclusion of random noise in the
data cause most of the predictions of next period’s value to just be the current period’s value
(plus some overall trend22). Thus, since we saw the same phenomenon of shifted predictions for
the daily NASDAQ data, a tentative conclusion is that daily stock price fluctuations are, to a
certain extent, random (at least for the NASDAQ index). This is very interesting because, for a
Random Walk, it holds that

E[y(t+ 1)] = y(t), (6.3)

which states that the expected future value is just the current value.23 Translated to our

21These noisy spikes could correspond to the noisy up and down movements of e.g. daily stock prices.
22The trend is negated when using differences that make the data stationary.
23For more details, see our Random Walk benchmark model in Section 2.1.1.

106

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

case, this says that the expected value of tomorrow’s price is just today’s price24—which is
exactly what our predictions have indicated so far! Thus, it may be argued that the daily
NASDAQ prices follow, to some extent, a Random Walk, which would lend empirical support
to the Efficient Market Hypothesis discussed in Section 2.1.1. Another possibility is that the
models we have used to predict the daily NASDAQ prices are simply not advanced enough. This
lack of predictive power may or may not then be found in the variables used as input features.

In any case, though, daily data may not be the proper object of prediction due to its erratic
nature. Instead, it might be more interesting to consider e.g. a moving average which smooths
the data. Predicting a moving average instead of the raw price itself is still highly relevant, as
it provides an indication of the trend. In place of daily data, it would also be interesting to
consider weekly or monthly data, which may not exhibit the same degree of fluctuation.

The motivation for smoothing data is further supported by other research; indeed, [10] argues
that forecasting trends is more plausible and suggests smoothing both input and output data
using simple or exponential moving averages. This recommendation is based on empirical work
showing that price changes around a trend are somewhat random [49], thus making prediction
of such price changes very difficult. Our tentative conclusion above (of somewhat random daily
fluctuations) agrees nicely with this. In many of the later experiments we will therefore use
smoothed data.

6.1.7 Support Vector Classification Models

Above, we considered the problem of predicting a continuous response—the stock price—which is
inherently a regression problem. This proved a difficult task, especially for the highly fluctuating
daily data. However, the task may be simplified if we only want to predict the movement direction
(up or down), i.e. whether the stock price will increase or decrease. Of course, since we replace
the continuous response with categorical/binary data (letting 1 denote an up movement, and
0 a down movement), this simplification removes some information in the data. It also leaves
us with the Hit Rate, or classification accuracy, as the only performance measure. In any case,
though, it might help to reduce the complexity of the prediction problem and possibly improve
the results. We will investigate this in the following, after briefly going through the effects of
varying the parameters.

Investigating the Effect of Varying C in C-SVC and ν in ν-SVC

The only parameters in C-SVC are C and γ. In ν-SVC, the parameter ν replaces C. We will
briefly analyse the effect of changing these two main parameters. In both cases we will use a
radial basis function (RBF) kernel25 To predict the daily up/down movement direction of the
NASDAQ index, the model employs as predictors the past 3 movement directions as well as
the technical indicators Momentum, RSI, Chaikin Oscillator, Price ROC, and Volume ROC, all
with lags of 3 (giving ni = 18). Thus, it is the same model we considered in the previous SVM
regression section. For the sake of simplicity, we keep γ constant at γ = 1/ni = 1/18 = 0.56.
The Hit Rate (classification accuracy) performances are shown in Fig. 6.17.

24More specifically, we should use returns (i.e. price differences) instead of prices.
25After numerous analyses, we found that the RBF kernel was both computationally faster and generally yielded

better, more stable results than the alternatives (i.e. the linear, polynomial, and sigmoid kernels).

107

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

10
−2

10
−1

10
0

10
1

10
2

10
3

40

50

60

70

80

90

100
Hit Rate vs. C for C−SVC

C

H
it

R
at

e
(%

)

Training set
Test set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
40

50

60

70

80

90

100
Hit Rate vs. ν for ν−SVC

ν

H
it

R
at

e
(%

)

Training set
Test set

Figure 6.17: Effect on training and test performance (classification accuracy) when varying C
for C-SVC (left) and ν for ν-SVC (right).

The left plot in Fig. 6.17 shows how the training performance for C-SVC improves (larger
Hit Rates are better) as C is increased. However, the performance on the unseen test data gets
worse. The model thus appears to memorize the training patterns and, as a result, loses its
generalization ability—a clear sign of overfitting. As discussed in the above, this fits excellently
with the theory.

In the case of ν-SVC, the right plot in Fig. 6.17 indicates that small ν may lead to overfitting
(perfect training Hit Rates of 100%, but poor test Hit Rates). However, increasing ν balances
things out, with lower (but still good) training performances and improved test performances.

Classification vs. Regression

In our MATLAB programs we have implemented cross-validation for finding the optimal pa-
rameters. The best SVM performances we were able to obtain (for the classification problem)
were test set Hit Rates of ∼ 60%. Since this is not better than the Hit Rate results obtained
for regression (in e.g. Table 6.9), and since classification takes out a good bit of information
and leaves us with this single performance measure, we will focus our energy on the regression
problem.26

6.1.8 Random Forests Models

For Random Forests there are much fewer adjustable parameters and settings than for Support
Vector Machines and Neural Networks. In fact, there are really just three; the number of trees N
in the forest, the leaf size, and the amount of randomly chosen input features m to consider when
splitting a node. A larger number of trees is generally better, but also increases computation
time, and the performance gains quickly become unnoticeable. Default values for the leaf size
generally work quite well. Thus, the parameter m is the only one to which Random Forests are
somewhat sensitive. We explore these things, and more, in the following analysis.

26Note that Random Forests and Neural Networks can likewise be used for classification, which we have also
implemented in our programs. But again, the results from the classification problems are not better than those
for the regression problems, so we stick with regression since this enables us to compute additional performance
measures and make nice, visual plots of the predictions.

108

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

As in all of the above, we consider the daily NASDAQ data in the period Jan 1 2010 to Jan
1 2014. For predictors we arbitrarily choose 3 lags of the response data and 3 lags of each of
the Momentum, RSI, and MACD technical indicators, giving ni = 12 input features. 90% of the
data will be used for training, parameter optimization, and feature importance evaluation. The
remaining 10% of the data are kept entirely unseen, as if it was future, unknown stock prices.

Varying the Number of Randomly Chosen Features m

We begin by training Random Forests with N = 100 trees for different values of the number
of randomly chosen input features m. The measure by which we will assess the performance is
the out-of-bag MSE, i.e. the error on the observations which were not used to grow the tree.
Giving, during the training phase, an indication of the generalization ability, this out-of-bag error
renders cross-validation obsolete and is one of the best features of Random Forests. The results
are shown in Fig. 6.18.

0 20 40 60 80 100
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

−4 Varying the no. of randomly chosen features m

Number of Grown Trees

O
ut

−
of

−
B

ag
 M

ea
n

S
qu

ar
ed

 E
rr

or

2
3
4
5
6
8
10

Figure 6.18: Out-of-bag mean-squared error (MSE) vs. number of trees for Random Forests with
different m = 2, 3, 4, 5, 6, 8, 10, 12 (number of randomly chosen input features).

Fig. 6.18 plots the out-of-bag MSE against the number of trees for different m. Sharing the
same general shape, the curves tell us that the error decreases as more trees are grown, in accord
with the theory that larger forests are generally better. However, as we also mentioned above,
the performance gains decrease, which is exactly what see from the flattening of the curves. This
general relation between error and forest size appears to hold true irrespective of m. But, the
magnitude of the error seems to depend on m, which is important when searching for the optimal
parameters. Although the results vary due to the random nature of the method, the outcome of
numerous test runs indicates thatm between 2 and 6 give the best performance (for this particular
case with ni = 12), which is also what we see in Fig. 6.18 where m = 2, 3, 4, 6 yield almost equally
low errors. In fact, these values agree nicely with the default value m = ni/3 = 12/3 = 4.

Varying the Leaf Size

We now vary the leaf size which determines the minimum number of observations per tree leaf.
Again, we are training forests with N = 100 trees. The out-of-bag performance for different leaf
sizes is shown in Fig. 6.19.

109

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

0 20 40 60 80 100
1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−4

Number of Grown Trees

O
ut

−
of

−
B

ag
 M

ea
n

S
qu

ar
ed

 E
rr

or

Varying the leaf size

1
5
10
20
50
100

Figure 6.19: Out-of-bag mean-squared error (MSE) vs. number of trees for Random Forests with
different leaf sizes.

Like the previous figure, Fig. 6.18 also plots the out-of-bag MSE against the number of trees,
but this time for varying leaf sizes. The overall shape of the curves is the same; the out-of-bag
error first decreases and then flattens out as the number of trees is increased, agreeing perfectly
with theory. Moreover, this seems to hold regardless of leaf size. As for the optimal leaf size,
the different values all yield rather similar errors (for sufficiently many trees grown). Still, it
seems that larger leaf sizes produce lower out-of-bag errors, but with diminishing improvements
as we approach 100 (as can be seen from the fact that the purple and yellow curves are very
close despite the large jump in magnitude from 50 to 100).

Estimating Feature Importance

Another extremely appealing aspect of Random Forests is its ability to estimate the importance
of input features. That is, the method can actually be used—in quite a simple manner—to rate
the predictive power of e.g. technical indicators and find the most optimal combination of input
variables. Normally, for other methods, this can be a very involved task requiring computation-
intensive feature selection algorithms or tiresome manual variation of the inputs. But Random
Forests provides a quick, straightforward approach.27

We grow a forest comprising N = 100 trees. Fig. 6.20 plots the increase in MSE due to
permuting the out-of-bag observations across each input variable; the larger this value, the more
important the variable [35].

27We refer to e.g. [35] for details on using Random Forests to measure feature importance.

110

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Feature Number

O
ut

−
of

−
B

ag
 F

ea
tu

re
 Im

po
rt

an
ce

Figure 6.20: Analysis of feature importance. Our inputs are formatted such that the feature num-
bers are as follows: 1-3 denote the lagged response data; 4, 7, and 10 are the lagged Momentum;
5, 8, and 11 are the lagged RSI; and 6, 9, 12 the lagged MACD.

The most prominent features in Fig. 6.20 are 4 through 12—which is, in fact, all the three
lags of each of the three technical indicators used here (Momentum, RSI, and MACD). If we
impose an arbitrary cutoff at 0.6, then the most important features are 5, 8, and 11—exactly all
three lags of the RSI.

Using a reduced model with just these three features, it is interesting to see if we can obtain
a predictive power similar to that of the full model with all features. We therefore grow a forest
with N = 100 trees using only features 5, 8, and 11 (RSI with lags of 1-3). The results are shown
in Fig. 6.21.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Feature Index

O
ut

−
of

−
B

ag
 F

ea
tu

re
 Im

po
rt

an
ce

0 20 40 60 80 100
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 10

−4

Number of Grown Trees

O
ut

−
of

−
B

ag
 M

ea
n

S
qu

ar
ed

 E
rr

or

Full model
Reduced model

Figure 6.21: Left: Feature importance for reduced model using only features 5, 8, and 11 (lagged
RSI). Right: Comparison of out-of-bag MSE for the full model (all 12 features) and the reduced
model.

The left plot in Fig. 6.21 shows the feature importance for the reduced model; the features
are ranked somewhat similarly to each other as in the full model, although most power now
seems to be ascribed to lags 2 and 3 of the RSI. The right plot compares the out-of-bag error for

111

6.1. Analysis of the NASDAQ Index Chapter 6. Analysis

the two models. Evidently, the reduced model actually gives slightly lower MSE than the full
model.

Plotting and Evaluating the Predictions

We now plot the predictions and compute performance measures for both the training set and
the unseen test set. Note that this is done after transforming the logreturns (used to build the
models) back to stock prices (hence the large difference in magnitude of the MSE in e.g. Fig.
6.21 and Table 6.10).

The MSE, MAPE, and Hit Rate performance measures for the full and reduced model are
shown in Table 6.10. The predictions are plotted along with the actual prices in Fig. 6.22.

TRAINING performance TEST performance
Model MSE MAPE HR MSE MAPE HR
Full model 425.84 0.53% 87.47% 815.23 0.57% 57.14%
Reduced model 567.23 0.63% 79.38% 833.25 0.58% 59.18%

Table 6.10: Training and test performances for the full and reduced Random Forest models.

0 100 200 300 400 500 600 700 800 900
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800
RF performance on TRAINING set

Time (trading days)

S
to

ck
 p

ric
e

Target
Predicted (full model)
Predicted (reduced model)

0 20 40 60 80 100
3500

3600

3700

3800

3900

4000

4100

4200
RF performance on TEST set

Time (trading days)

S
to

ck
 p

ric
e

Target
Predicted (full model)
Predicted (reduced model)

Figure 6.22: Predictions and actual values for training data (left) and test data (right). Full
model: 3 lags of the response, Momentum, RSI, and MACD. Reduced model: 3 lags of the RSI.

In Table 6.10 we see that the full model performs slightly better than the reduced one, with
lower MSE and MAPE and a larger Hit Rate. This can be difficult to visually assess from the left
plot in Fig. 6.22 due to the large time period, but deviations are still visible. As for the test set,
the performance measures in Table 6.10 are very similar; although having slightly higher MSE
and almost identical MAPE, the reduced model actually achieves a slightly higher Hit Rate. But
these differences are so small as to make no matter. Thus, whereas the full model showed better
training performance, the two models perform almost identically on the unseen test data. Of
course, the previous section showed that the reduced model had slightly lower (though not by
much) out-of-bag error than the full model. Still, however, it is incredible that the same test
performance can be achieved by using just three lags of the RSI (reduced model) compared to
using three lags of the response, Momentum, RSI, and MACD.

Finally, the right plot in Fig. 6.22 shows an interesting feature; the predictions of the daily
data appear shifted by one time step. This seems a common occurrence when attempting to

112

6.2. Experiments Chapter 6. Analysis

predict noisy, erratic daily data. Indeed, we saw it earlier in e.g. Section 6.1.6 where we also
gave a thorough discussion of the phenomenon and possible reasons for it.

6.2 Experiments

In the previous sections we analysed the NASDAQ Index and performed several initial experi-
ments that investigated, among other things, the effects of varying the model parameters. We
were able to draw several conclusions in this regard, all of which were generally consistent with
theory and previous research. However, we were also able to draw some tentative conclusions
in another regard. More specifically, we found, in accord with other research, that it may be
implausible to forecast the daily stock price fluctuations themselves. Rather, it may be more
plausible to consider e.g. weekly data or, perhaps better yet, smoothed data. For example, a
5-day moving average of the daily stock price provides a measure of the average price over the
past trading week—an interesting and relevant thing to try to predict.

Whereas the experiments in the previous section were largely method-specific, the numerous
experiments in this section focus on comparing the performances of different models in a variety
of scenarios. We dig deeper into data type and amount, parameter and input combinations, etc.
In addition, we will also perform some predictions for other assets than just the NASDAQ Index.

Experiment 1

In this experiment we compare the performances of SVMs, ANNs, and RFs for the following case
of data, input combination, etc.:

Data and time period: Daily prices of the NASDAQ Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: In respective order: 5-period EMA of daily prices;
logarithmic returns; normalization to zero mean, unit variance.

Inputs: 2 lags of the response data and 2 lags of MOM, RSI, and MACD. In total, ni = 8.28

Data Split: The total 1006 observations29 are split into training/test sets comprising 90%/10%
of the data.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni = 1/8, ν = 0.9. Neural Network (NN)
trained with Levenberg-Marquardt algorithm and m = 4 hidden neurons. Random Forest
(RF) with n = 100 trees and a leaf size of 20.

The model parameters were optimized using cross validation (for NN and SVM) and the
out-of-bag error (for RF), which we have implemented in the attached MATLAB program. This
ensures a fair comparison where each respective method is properly represented, thus avoiding
matching e.g. a good Support Vector Machine to a bad Neural Network.

In addition to the three SVM, NN, and RF models, we have included the Random Walk (RW)
and Random Guess (RG) models, which serve as benchmarks. The RW model uses the current
period’s price as the prediction for the next period’s price. The RG model basically flips a coin
to guess whether the price will increase or decrease (hence, its only performance measure is the
Hit Rate). On average, the RG model’s Hit Rate will, of course, be 50%, but our implementation

28MOM = Momentum, RSI = Relative Strength Index, and MACD = Moving Average Convergence Divergence.
29The effective number of observations is slightly smaller (976) since some inputs, e.g. technical indicators and

lagged data, require a certain amount of data points to be initiated. Synchronization of targets and inputs thus
results in the first few observations being cut away.

113

6.2. Experiments Chapter 6. Analysis

in the attached MATLAB program simulates a real coin flip for finite sample sizes, whereby the
actual accuracy will deviate around this average.

For performance measures we consider the mean-squared error (MSE), the mean absolute
percentage error (MAPE)30, and the hit rate (HR). The results are shown in Table 6.11. The
predictions are plotted in Figure 6.23.

TRAINING performance TEST performance
Model MSE MAPE HR MSE MAPE HR
SVM 105.65 0.264% 77.45% 92.69 0.191% 77.55%
NN 133.21 0.324% 74.83% 106.91 0.208% 76.53%
RF 92.73 0.257% 78.70% 108.10 0.208% 74.49%
RW 191.64 0.404% 73.55% 165.01 0.272% 75.51%
RG N/A N/A 48.80% N/A N/A 48.98%

Table 6.11: Performance results for Experiment 1. The different models are: SVM = Support
Vector Machine; NN = Neural Network; RF = Random Forest; RW = Random Walk; RG =
Random Guess. The training set is used for model building and comprises 878 observations. The
test set is entirely “unseen” and comprises 98 observations. Lower MSE and MAPE values are
better, while higher HR values are better.

0 100 200 300 400 500 600 700 800 900
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800
Performances on TRAINING set for different models

Time (trading days)

S
to

ck
 p

ric
e

Actual
SVM
NN
RF

0 20 40 60 80 100
3500

3600

3700

3800

3900

4000

4100

4200
Performances on TEST set for different models

Time (trading days)

S
to

ck
 p

ric
e

Actual
SVM
NN
RF

Figure 6.23: Prediction results for the different models in Experiment 1. Left: training set.
Right: unseen test set.

Table 6.11 shows that, for each of the three machine learning methods, the training and
test performances are rather similar. This indicates that overfitting has not taken place—and
that our cross-validation and out-of-bag validation has worked. RF has slightly better training
performance (lower MSE and MAPE, higher Hit Rate) than NN and SVM, but also slightly
worse test performance. SVM performs best on the test set on all three performance measures.
But the differences are marginal, as can also be seen from Fig. 6.23 where the predictions from
the three models almost lie atop each other.

These results are interesting in themselves when assessing which machine learning method is
best (in which case it is difficult to announce a clear winner). However, when it comes to real-
world application, we must compare them to the benchmarks. RG, the simple coin-flip model,

30In order to take into account the possible changes in magnitude of the stock price, we have included the
MAPE to get a scale-invariant error measure.

114

6.2. Experiments Chapter 6. Analysis

only predicts around 50% (as expected) of the up/down price movements. All three models—
SVM, NN, and RF—are clearly much better than this. As for RW, the “tomorrow = today”
model, this shows training and test Hit Rates roughly on par (but mostly lower) with our three
models. However, in terms of MSE and MAPE, RW performs significantly worse on both the
training and test set. Thus, although our SVM, NN, and RF models predict roughly the same
percentage of up/down movements as the RW benchmark, they do so in a much better and more
stable way—with lower deviation from the actual prices.

In conclusion, the SVM, NN, and RF models show exceptionally good performances on the
training set—but, more importantly, also on the unseen test set. This can also be seen in Fig. 6.23
where the predictions lie very close the actual data. They each succeed in correctly predicting
about 75% of the up/down movements. This is a very good Hit Rate, but it does slightly
wane when compared to the comparable Hit Rate obtained by the Random Walk benchmark31.
However, in terms of the MSE and MAPE—both of which take into account the magnitude of
the predictions (as opposed to the Hit Rate measure)—our three models perform much better
than the RW benchmark.

Experiment 2

In this experiment we investigate the effect of varying the number of lags for both the response
variable and the exogenous inputs. This will be done for the particular exogenous input com-
bination comprising the MOM, RSI, and MACD technical indicators. The experiment settings
can be summarized as follows:

Data and time period: Daily prices of the NASDAQ Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns;
normalization to zero mean, unit variance.

Inputs: Lagged response data and MOM, RSI, and MACD. The number of lags is subject of
variation; the response lags and exogenous input lags are both varied from 0 to 5, resulting
in a total of 35 different lag combinations.32

Data Split: The effective 976 observations are split into training/test sets comprising 90%/10%
of the data (i.e. 878/98 observations).

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and a number of hidden neurons optimized using
10-fold cross-validation. Random Forest (RF) with n = 100 trees and a leaf size optimized
using the out-of-bag error.

As mentioned, the NN and RF parameters have been optimized using cross-validation and
the out-of-bag error, respectively. This is in important because the varying number of lags
results in different numbers of inputs. This is especially crucial for neural networks, where the
choice of hidden neurons depends on the number of inputs so as to obtain the best balance
between underfitting and overfitting. Now, we have also implemented cross-validation for SVMs
in the attached MATLAB programs, but this was not used here since we found that the C and

31It is important to add that the good performance (particularly the Hit Rate) of the RW benchmark model
is mainly due to the general upward trend observed in the NASDAQ Index in the time period considered here
(as can also be seen in Fig. 6.23). Of course, this doesn’t lend less importance to the RW model results, because
such trends are indeed a common phenomenon on the financial markets.

32The combination with zero lags of both the response lags and the exogenous inputs is obviously not possible,
since no input data is available in this case.

115

6.2. Experiments Chapter 6. Analysis

ν parameters yielded the best performances irrespective of the number of lags. However, the
varying number of lags—and hence the varying number of inputs ni—is indeed accounted for in
the SVM model via the γ parameter that depends ni.

With 35 different lag combinations—and six error measures for each of three different models—
the resulting amount of raw data is much too large to present in tables. Not only is visualization
in figures much more appropriate, it also showcases the potential relationships in a way that is
much easier to grasp. However, there is still an abundance of figures, so we have chosen a sample
of them to show here.33 The selected sample reflects that we are most interested in the MSE and
MAPE performances (because these contain more information) on the unseen test data (because
this gives an indication of true prediction ability). Moreover, we have included slightly more
SVM plots than NN and RF plots, the reason being that the latter two methods include random
initialization of weights (for NN) and sampling of input features (for RF). Even though we have
implemented measures to reduce the effects of this randomization—by e.g. re-training numerous
neural networks (to re-initialize the weights) and choosing the one with lowest error on some
unseen part of the training data—the differences in results across different lag combinations may
still partly be ascribed to these random effects. SVM does not include any randomization and
is thus more consistent and appropriate for this experiment. The performance results are shown
in Fig. 6.24.

33Note that all figures are available in the attached /Results/Experiment-2 folder and can furthermore be
re-created in the attached MATLAB programs.

116

6.2. Experiments Chapter 6. Analysis

0 1 2 3 4 5
80

90

100

110

120

130

140

150

tLags

M
S

E

NN test MSE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

−3

tLags

M
A

P
E

NN test MAPE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
95

100

105

110

115

120

125

130

135

140

tLags

M
S

E

RF test MSE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

−3

tLags

M
A

P
E

RF test MAPE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
90

100

110

120

130

140

150

tLags

M
S

E

SVM training MSE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
x 10

−3

tLags

M
A

P
E

SVM training MAPE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
90

95

100

105

110

115

tLags

M
S

E

SVM test MSE

xLags = 0
1
2
3
4
5

0 1 2 3 4 5
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2
x 10

−3

tLags

M
A

P
E

SVM test MAPE

xLags = 0
1
2
3
4
5

Figure 6.24: Performance results for Experiment 2 where the number of lags is varied. “tLags”is
the number of lags of the response variable. “xLags” is the number of lags of each exogenous
input variable. We focus on the MSE and MAPE The plot titles indicate what is being shown;
e.g. “NN test MSE” is the MSE test performance for the Neural Network model.

117

6.2. Experiments Chapter 6. Analysis

The main conclusion to be drawn from Fig. 6.24 is that, regardless of the exogenous input
lags (”xLags”), including at least one lag of the response variable (”tLags”) significantly improves
performance (lower MSE and MAPE). From the third row of plots, showing the training perfor-
mances for the SVM model, we see from the downward sloping curves that including additional
lags of the response variable further improves the training results (and this also holds for all
values of “xLags”). However, the curves in the other plots, for the test performances, somewhat
flatten out for larger “tLags”, which means that including additional response lags does not seem
to improve the test performance—which is really what we are interested in since this is a measure
of the model’s ability to generalize to unseen (i.e. unknown, future) data. Of course, this is the
general picture; in some cases, larger “tLags” is still seen to yield better performances.

The results in Fig. 6.24 also indicate that the number of lags of the exogenous inputs is not
as important as that first lag of the response variable. Moreover, the importance of “xLags”
appears to somewhat vary. In most cases of the test performance, there are only marginal
differences between using few lags (e.g. 0 or 1) of the exogenous inputs and using many lags
(e.g. 4 or 5). However, especially for SVM—which, due to not using randomization, gives the
most concrete and consistent results in this experiment—we actually observe significant training
performance improvements for additional “xLags” (as can be seen from third row of plots, where
larger “xLags” yield lower MSE and MAPE).

Experiment 3

Whereas Experiment 2 above investigated the effect of varying the number of lags for a particular
exogenous input combination, this experiment turns things around and explores a variety of
different exogenous input combinations for a given number of lags. The data and models used
are:

Data and time period: Daily prices of the NASDAQ Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns;
normalization to zero mean, unit variance.

Inputs: The input variables are subject of variation; we will mainly consider an array of technical
indicators and response data. The number of lags of each variable is kept at 3.34

Data Split: The effective 976 observations are split into training/test sets of 90%/10%.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag error.

The parameters have been chosen and/or optimized for the same reasons discussed in Ex-
periment 2 (section 6.2) above. The input combinations are listed in Table 6.12.35 Note from
Table 6.12 that the odd input combination IDs do not include lagged response data. The input
combinations with even IDs do so, though, allowing us to investigate the effect of adding the
response variable. Note also that we have chosen to consider this limited array of combinations;

34Note that the exogenous inputs have been differenced to obtain stationarity, similarly to the use of logarithmic
returns instead of raw prices. The use of differenced exogenous inputs is investigated in Experiment 4 below.

35MOM = Momentum. MACD = Moving Average Convergence Divergence. RSI = Relative Strength Index.
OBV = On Balance Volume. WPCTR = Williams’ %R. CHOSC = Chaikin Oscillator. CHVOL = Chaikin
Volatility.

118

6.2. Experiments Chapter 6. Analysis

investigating each and every possible permutation of the available exogenous inputs is an ex-
tremely involved task beyond the scope of this study. The results (on the test set) are shown in
Fig. 6.25.

ID Input combination
1 MOM
2 MOM + y
3 MOM + MACD + RSI
4 MOM + MACD + RSI + y
5 MOM + MACD + RSI + OBV
6 MOM + MACD + RSI + OBV + y
7 MOM + MACD + RSI + OBV + WPCTR
8 MOM + MACD + RSI + OBV + WPCTR + y
9 MOM + MACD + RSI + OBV + WPCTR + CHOSC + CHVOL
10 MOM + MACD + RSI + OBV + WPCTR + CHOSC + CHVOL + y

Table 6.12: Input combinations in Experiment 3. y denotes the response variable. We have used
lags from 1 to 3 for each input combination.

119

6.2. Experiments Chapter 6. Analysis

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Input combination

M
S

E

Test set MSE for different input combinations

NN
SVM
RF
RW

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Input combination

M
A

P
E

Test set MAPE for different input combinations

NN
SVM
RF
RW

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Input combination

H
it

R
at

e

Test set Hit Rate for different input combinations

NN
SVM
RF
RW
RG

Figure 6.25: Experiment 3: Test set performances for different input combinations. Top: MSE
(lower is better). Middle: MAPE (lower is better). Bottom: Hit Rate (higher is better). See
Table 6.12 for what input combination the numbers on the horizontal axis refer to. The models
are: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF). We have
included the Random Walk (“tomorrow = today”), and the Random Guess (”coin flip”) as
benchmarks. RG can only give a Hit Rate performance.

120

6.2. Experiments Chapter 6. Analysis

The top and middle plots in Fig. 6.25 show that our three models (NN, SVM, RF) yield
significantly better performances (lower MSE and MAPE) on the unseen test set than the simple
Random Walk (RW) model (which predicts tomorrow’s price as today’s price). In terms of Hit
Rate (correct up/down movement predictions), however, the four models are very equal. But
the NN, SVM, and RF models still outperform by far the simple Random Guess (RG) “coin flip”
method.36

What is more interesting in this experiment, however, is the performances for different input
combinations. Here, we remark the following conclusions that can be drawn from Fig. 6.25:

• Especially the MAPE and Hit Rate performance measures for each model are all fairly
constant across the different input combinations. The models (especially NN) exhibit more
variability in the MSE performance measure (top plot).

• The roughly constant performances indicate that adding additional technical indicators
as exogenous inputs (as is done by going through input combination IDs 1, 3, 5, 7, and
9) does not necessarily improve performance. For example, adding MACD and RSI to
MOM (combination 3 vs. 1) yields better MSE and MAPE for all three models. But
further adding OBV (input combination 5 vs. 3) worsens performance. On the other
hand, performance is again slightly improved in combination #7 which adds WPCTR, but
worsened in #9 which adds CHOSC and CHVOL. It is important to note, though, that
the differences are very small, sometimes marginal.

• Comparing combinations with odd IDs to those with even IDs (e.g. #1 to #2, #3 to
#4, etc.) shows that adding lagged response data most often improves performance. For
example, adding lagged response data to the MOM input (#2 vs. #1) decreases MSE and
MAPE. The same holds when comparing #9 and #10, and also other pairs. But it is not
always that adding lagged response improves performance.

The results are therefore, to some extent, inconclusive. Indeed, the randomness inherent in
Neural Networks and Random Forests cause different simulations and test runs to yield slightly
different results—even though we have minimized these effects through various measures; e.g. by
training several neural networks to re-initialize the random weights, etc. This inherent random-
ness is likely the reason for the varying results observed, in particular, for the Neural Network—
which, as we have found after numerous runs and simulations, is also the model yielding the
most inconsistent results across runs with identical settings.

However, irrespective of the slight variations, our results show that very good performances
can be achieved through the use of technical indicators alone (i.e. without lagged response data),
which is actually quite remarkable.

Experiment 4

Spurred by the use of (stationary) logarithmic returns instead of (non-stationary) raw prices, we
now investigate whether differencing37 (to obtain stationarity) the exogenous input data improves
forecasting performance. The setup is as follows:

Data and time period: Daily prices of the NASDAQ Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns;
normalization to zero mean, unit variance.

36Our Random Guess method simulates a real scenario consisting of a finite number of coin flips, which is why
the Hit Rate results in the bottom plot in Fig. 6.25 are different from (but fluctuate around) 50%.

37The first difference of a series yNi=1 is the series yi − yi−1
N
i=2.

121

6.2. Experiments Chapter 6. Analysis

Inputs: Two combinations: 1) 3 lags of MOM, RSI, and MACD alone (ni = 9). 2) 3 lags of
MOM, RSI, and MACD and 3 lags of the response (ni = 12). For each combination we try
compare raw vs. differenced exogenous inputs.

Data Split: The effective 976 observations are split into training/test sets of 90%/10%.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag error.

Note that we consider two different input combinations: 3 lags of MOM, RSI, and MACD
with and without 3 lags of the response. This enables us to see whether differencing not only
has an effect in general, but also if the potential effect is different in the absence or presence
of lagged response data. As a result of these two input combinations, and hence two different
numbers of inputs, we optimize the model parameters by specifying an ni-dependant γ for SVM
(the chosen C and ν have been found to work best in all cases), choosing for NN a number of
hidden neurons based on cross-validation, and choosing for RF a leaf size based on the out-of-bag
error. This ensures improved performances and a more fair and balanced comparison between
different input combinations.

Moreover, as evident in the attached MATLAB program, we perform for each case and model
10 iterations and compute the mean performance measures. In addition to our other implemented
measures as described earlier, this further reduces the random effects inherent in Neural Networks
and Random Forests, and allows us to see in a much more consistent and conclusive way any
potential performance effects between raw and differenced exogenous inputs.

The results are shown in Fig. 6.26. The RW and RG benchmarks are not included, since
they are not relevant to the purpose of this experiment.38

38However, our MATLAB program can still output and show the benchmark performances. The results are the
same as earlier; our NN, SVM, and RF models have similar Hit Rates as RW, but significantly outperform it in
terms of MSE and MAPE. They also outperform by far the simple RG.

122

6.2. Experiments Chapter 6. Analysis

Raw Differenced
0

20

40

60

80

100

120

Exogenous input format

M
S

E

Test set MSE for raw vs. dfferenced exogenous input

NN
SVM
RF

Raw Differenced
0

20

40

60

80

100

120

140

Exogenous input format

M
S

E

Test set MSE for raw vs. dfferenced exogenous input

NN
SVM
RF

Raw Differenced
0

0.05

0.1

0.15

0.2

0.25

Exogenous input format

M
A

P
E

Test set MAPE for raw vs. dfferenced exogenous input

NN
SVM
RF

Raw Differenced
0

0.05

0.1

0.15

0.2

0.25

Exogenous input format

M
A

P
E

Test set MAPE for raw vs. dfferenced exogenous input

NN
SVM
RF

Raw Differenced
0

10

20

30

40

50

60

70

80

Exogenous input format

H
it

R
at

e

Test set Hit Rate for raw vs. dfferenced exogenous input

NN
SVM
RF

Raw Differenced
0

10

20

30

40

50

60

70

80

Exogenous input format

H
it

R
at

e

Test set Hit Rate for raw vs. dfferenced exogenous input

NN
SVM
RF

Figure 6.26: Experiment 4: Test set performances for raw vs. differenced exogenous input.
Left side: Input combination with lagged MOM, RSI, and MACD and with lagged response.
Right side: MOM, RSI, and MACD and without lagged response. Top: MSE (lower is better).
Middle: MAPE (lower is better). Bottom: Hit Rate (higher is better). The inputs are 3 lags
of MOM, RSI, and MACD, including 3 lags of the response variable. The models are: Neural
Network (NN), Support Vector Machine (SVM), and Random Forest (RF).

When including lagged response as input (left column of plots in Fig. 6.26), we see that
differencing the exogenous inputs does yield slightly better performances (lower MSE and MAPE,
and higher Hit Rate39). This goes for all three models.

When not including lagged response data (right side of Fig. 6.26), i.e. using exogenous inputs
alone, we also see that differencing them yields better performance than when using them in raw
form. But the important thing to notice is that the degree of improvement is larger; there are
greater decreases in MSE and MAPE, and increases in Hit Rate, than before.

In conclusion, differencing the exogenous inputs yields better performance in general. Also,
the performance improvement is greater when using exogenous input alone than when including
lagged response data. So the effect of differencing the exogenous inputs is more pronounced
when using them alone as predictors—but the effect is still there even when including lags of the
response variable.

Experiment 5

This experiment investigates whether additional training data (i.e., historical data further and
further in the past) improves performance. The setup is as follows:

Data and time period: Daily prices of the NASDAQ Index. The start date of the time period
is varied, while the final date is kept at Jan 01 2014.

39The differences in Hit Rate are very small because this performance measure is not as distinguished as the
other two.

123

6.2. Experiments Chapter 6. Analysis

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns;
normalization to zero mean, unit variance.

Inputs: 3 lags of MOM, RSI, and MACD and 3 lags of the response (ni = 12).

Data Split: The total number of observations vary due to the varying time periods. In each
case, we keep the number of test set observations at 50, while the number of training
observations vary.40

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and 5 hidden neurons. Random Forest (RF) with
n = 100 trees and a leaf size of 20.

We consider 12 different starting dates, ranging with increasing increments from Jun 01 2013
(giving a time period of 6 months) all the way back to Jan 01 2000 (a time period of 14 years
∼ 3500 trading days). This gives 12 different values for the number of training observations.
In each case, and for each model, we compute performances 20 times and average them. This
reduces the performance influences that may be due to the random effects inherent in Neural
Networks and Random Forests, and thus allows us to better see the potential performance effects
resulting from varying the amount of training data. The test set performance results are shown
in Fig. 6.27.41

0 500 1000 1500 2000 2500 3000 3500
60

65

70

75

80

85

90
Test set MSE vs. amount of training data

No. of training observations

M
S

E

NN
SVM
RF

0 500 1000 1500 2000 2500 3000 3500

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185
Test set MAPE vs. amount of training data

No. of training observations

M
A

P
E

NN
SVM
RF

Figure 6.27: Experiment 5: Test set performances for varying amounts of training data. Left:
MSE (lower is better). Right: MAPE (lower is better). The inputs are 3 lags of the response
and 3 lags of MOM, RSI, and MACD. The models are: Neural Network (NN), Support Vector
Machine (SVM), and Random Forest (RF).

For each model, the MSE and MAPE test performance measures in Fig. 6.27 generally exhibit
the same behaviour. It should be noted, though, that the MAPE might be slightly more reliable
when including prices very far back in the past. The reason is that stock prices over such a

40It is important that the amount of test data is kept constant in this case, so as to ensure a fair comparison
of performances across the cases with different amounts of training data.

41Due to its relatively less quantitative nature (measuring only the percentage of correct up/down predictions),
the Hit Rate performance measure is not as distinguished as the MSE and MAPE, which is why we have excluded
it from Fig. 6.27. However, our attached MATLAB program still shows it. In addition, the program also shows
plots of the training performances.

124

6.2. Experiments Chapter 6. Analysis

long time period may change scale. Due to its percentage nature, MAPE is invariant to such
scale changes. MSE, on the other hand, may lend more weight (larger error contribution) to
the most recent observations, or generally those with largest magnitude.42 This aside, Fig. 6.27
shows a significant initial improvement in test performance (large drop in MSE and MAPE),
but mainly for NN and SVM. The RF error also decreases slightly, but rises back up. For the
remaining number of training observations, the RF error is fairly constant. The slight differences
between the RF error and those for NN and SVM may be ascribed to the fact that RF is an
ensemble method while NN and SVM are not. Consequently, through the added robustness
and power, RF might need fewer observations to achieve good generalization—which explains
its minimum MSE and MAPE occurring before (at a smaller value for the number of training
observations) the minimum for NN and SVM. As for these latter two models, they exhibit a
significant performance boost in the beginning; i.e., increasing the training data set when it
is small. The performance further improves up to the point of minimum MSE and MAPE
occurring at roughly 700 training observations (∼ 3 years of historical daily prices). After this,
NN in particular is fairly constant; neither more training data seems to neither improve or reduce
performance. The SVM performance varies a bit more and actually ends up increasing near the
end, indicating that such large amounts (∼ 14 years) of historical data are improper.

In conclusion, using too much training data is not good for any of the models; it does not
significantly improve performance (in many cases quite the contrary), and, additionally, it only
increases the computation times. We find that using about 3 years’ worth of historical data
yields the best performance.43

Experiment 6

Experiment 3 investigated a selection of different technical indicators as exogenous inputs; we
tried different numbers of indicators, but we only considered one combination in each case.
In this experiment we consider the same seven technical indicators, but for each number (one
through seven) we go through all possible combinations, thus finding the optimal combinations.

Data and time period: Daily prices of the NASDAQ Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns;
normalization to zero mean, unit variance.

Inputs: Subject of variation. All possible combinations of n = 7 technical indicators44 taken
k = 1, 2, . . . , 7 at a time. 3 lags are used for each input, including the response data.

Data Split: The effective 976 observations are split into training/test sets of 90%/10%.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag error.

So, the question we examine in this experiment is: Using k technical indicators as exogenous
input, which combination yields the best performance?45 I.e., which technical indicators possess

42Computing the MSE performance using the normalized and differenced data solves this problem altogether,
but also takes away some of the information of the resulting error value; it is easier to interpret and understand
an error value computed using prices than one calculated via some pre-processed, transformed data type.

433 years ∼ 750 trading days. The effective number of observations is slightly smaller, because some observations
are needed to initialize the technical indicators, etc.

44The indicators are: MOM, RSI, MACD, OBV, WPCTR, CHOSC, CHVOL. They will be denoted by numbers
1 through 7 for easy notation. See Experiment 4 (Section 6.2) or Appendix A for further information.

45In this experiment we have used the MSE measure as the performance criterion, as evident in or MATLAB
program. Lower MSE is better.

125

6.2. Experiments Chapter 6. Analysis

the best predictive power? The results are shown for each k (up to n = 7) in Table 6.13.

k nCk NN SVM RF
1 7 2 5 1
2 21 3, 6 5, 6 1, 6
3 35 1, 2, 5 3, 5, 6 1, 2, 6
4 35 1, 3, 5, 6 2, 3, 5, 6 1, 2, 6, 7
5 21 1, 2, 3, 4, 5 2, 3, 4, 5, 6 1, 2, 3, 5, 6
6 7 1, 2, 3, 4, 5, 7 1, 2, 3, 4, 5, 6 1, 3, 5, 5, 6, 7
7 1 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7

Table 6.13: Experiment 6: Best input combinations. k is the number of inputs used out of the
total n = 7. The number of ways of choosing k from n is nCk ≡

(
n
k

)
≡ n!

k!(n−k)! . The numbers in

the NN, SVM, and RF columns are the inputs: 1 = MOM, 2 = RSI, 3 = MACD, 4 = OBV, 5
= WPCTR, 6 = CHOSC, 7 = CHVOL.

The case k = 7 is trivial, as it has only one possible combination. For a particular k, the
optimal combinations are clearly not the same for the three models. This may be ascribed to
randomness or the possibility that some indicators might work better or worse when used alone
or in conjunction. But some indicators do appear more than others. Since most of them are
obviously included for large k, it interesting to see which indicators are excluded as we go down
from k = 7. One striking feature is that CHVOL (no. 7) is quickly left out when we reach k = 5.
And MACD (no. 4) is left out when we reach k = 4. The most prominent indicators for k = 3
are MOM, RSI, WPCTR, and CHOSC (1, 2, 5, and 6). And for k = 2, it is interesting to see
that CHOSC (no. 6) appears for all three models.

We have also found the very best combination (over all the different k) for each method.

Best overall combinations:

NN: 1, 2, 5 (MOM, RSI, WPCTR)

SVM: 3, 5, 6 (MACD, WPCTR, CHOSC)

RF: 1, 2, 6 (MOM, RSI, CHOSC)

The most optimal input combination is thus not the same for the three methods. This may
be ascribed to the randomness inherent in especially Neural Networks and Random Forests, or
it may be due to the possibility that the methods actually favour different exogenous inputs.

In any case, though, it is interesting to see that, out of all possible combinations using k =
1, 2, . . . , 7 technical indicators, the optimal combination for each method uses k = 3 indicators.
It is also interesting to look at the specific indicators, as these are much the same; only five out
of the total seven indicators are represented above, one of which only appears once. The four
most prominent exogenous inputs are 1, 2, 5, and 6. In this case, the technical indicators with
most predictive power are thus MOM, RSI, WPCTR, and CHOSC.

Experiment 7

So far, we have focused on daily data. This experiment investigates whether weekly or monthly
data yields better results.46

46It is beyond the scope of this study to perform an in-depth analysis of which data frequency is best for
forecasting. This would require tests for a multitude of different time periods and assets. However, the subject is

126

6.2. Experiments Chapter 6. Analysis

Data and time period: Weekly prices of the NASDAQ Index for the 14-year time period from
01 Jan 2000 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of prices; logarithmic returns; normal-
ization to zero mean, unit variance.

Inputs: 3 lags of RSI, MACD, WPCTR, and CHOSC, and 3 lags of the response (ni = 15).

Data Split: The 700 effective observations are split into training/test sets of 600/100.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag error.
ARMA(1,1)-GARCH(1,1) model.

The performance measures (for the unseen test data) are listed in Table 6.14 and the predic-
tions shown in Fig. 6.28.

Model MSE MAPE Hit Rate

NN 387.33 0.459 % 78.00 %

SVM 406.08 0.496 % 75.00 %

RF 369.49 0.466 % 74.00 %

AG 344.05 0.446 % 74.00 %

RW 736.87 0.720 % 74.00 %

RG N/A N/A 45.00 %

Table 6.14: Experiment 7: Test set performances for weekly NASDAQ data. NN: Neural Net-
work. SVM: Support Vector Machine. RF: Random Forest. AG: ARMA-GARCH. RW: Random
Walk. RG: Random Guess. See the summary in the text for details.

0 20 40 60 80 100
2600

2800

3000

3200

3400

3600

3800

4000

4200
Performances on TEST set for different models

Time

S
to

ck
 p

ric
e

Actual
SVM
NN
RF
AG

0 20 40 60 80 100
2600

2800

3000

3200

3400

3600

3800

4000

4200
Predicted and actual stock prices − TEST set

Time (trading weeks)

S
to

ck
 p

ric
e

Actual
Predictions

Figure 6.28: Experiment 7: Test set predictions (red) and actual prices (blue) for weekly NAS-
DAQ data. Left plot: All models included. Right plot: Predictions for the different models lie
extremely close, so only one is shown (RF) to avoid clutter.

a candidate for future research.

127

6.2. Experiments Chapter 6. Analysis

The results—both the quantitative performance measures and the plots of the predictions—
indicate that using weekly data does not significantly relieve the problems; the crucial short-
comings encountered with daily data are still present here when using weekly data. We see this
from the fact that the Hit Rates are not significantly better than that obtained by the Random
Walk model. And we see it from the plots where the models fail to properly predict the stock
price when it makes a sudden significant move in the opposite direction (away from the current
trend). However, our models still significantly outperform the RW benchmark in terms of MSE
and MAPE, indicating that their predictions are much more precise and closer to the actual
prices. Our models also outperform by far the simple Random Guess “coin flip” benchmark.

Our MATLAB programs also allow for the option to use monthly data. This gives us much
fewer observations to work with for training and testing the models. But we are still able to get
some results. These, and the conclusions that may be drawn from them, are similar to the those
for weekly data above, and we leave them out for the sake of brevity.47

Experiment 8

Regarding financial analysis, our main focus has been technical analysis, as reflected by the use
of technical indicators in all of the previous experiments. In this experiment we draw upon some
fundamental analysis in the shape of interest rates, oil and gold prices, etc. We also consider the
S&P 500 Index instead of the NASDAQ Index. We summarize as follows:

Data and time period: Daily prices of the S&P 500 Index from 01 Jan 2010 - 01 Jan 2014.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns; nor-
malization to zero mean, unit variance.

Inputs: 3 lags of the response, including 3 lags of each of the following: S&P 500 Volatility
Index, CBOE Interest Rate 10-year Treasury Note Index, iPath S&P GSCI Crude Oil
Total Return ETF Index, and SPDR Gold Shares Index.

Data Split: The effective 976 observations are split into training/test sets of 90%/10%.

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag error.

Our exogenous inputs include indexes that track fundamental, macro-economic variables such
as the volatility of the S&P 500 index, the interest rate, the oil price, and the gold price.

For the sake of comparison we actually perform a total of four experiments where the ex-
ogenous inputs are as follows: 1) none, 2) only fundamental, 3) only technical, and 4) both
fundamental and technical. The technical indicators are MACD, RSI, WPCTR, CHOSC, and
OBV. Each of the four cases also used 3 lags of the response data. In each case we compute
model performances twenty times and average them, so as to reduce the effects of the randomness
inherent in NNs and RFs. This better ensures that any potential differences in the results are
actually due to the different types of exogenous input. The results are shown in Fig. 6.29.

47Later, in the Conclusion (Chapter 7), we discuss how monthly data may be used for long-term forecasting in
a more adequate way.

128

6.2. Experiments Chapter 6. Analysis

None Fundamental Technical Both
0

5

10

15

20

Exogenous input type

M
S

E

Test set MSE for different exogenous input types

NN
SVM
RF

None Fundamental Technical Both
0

0.05

0.1

0.15

0.2

0.25

Exogenous input type

M
A

P
E

Test set MAPE for different exogenous input types

NN
SVM
RF

None Fundamental Technical Both
0

10

20

30

40

50

60

70

80

Exogenous input type

H
it

R
at

e

Test set Hit Rate for different exogenous input types

NN
SVM
RF

Figure 6.29: Experiment 8: Test set performances for the four cases using as exogenous inputs:
1) nothing, 2) fundamental data, 3) technical data, and 4) both technical and fundamental data.
Top: MSE (lower is better). Middle: MAPE (lower is better). Bottom: Hit Rate (higher is
better). The models are: Neural Network (NN), Support Vector Machine (SVM), and Ran-
dom Forest (RF). For comparison, our Random Walk benchmark model yielded MSE = 26.5,
MAPE = 0.25%, and HR = 76%. The Random Guess benchmark naturally gave HR ≈ 50%.

From Fig. 6.29 we see that using fundamental data on its own generally gives poorer perfor-
mance (higher MSE and MAPE) than using technical data. This holds for all three methods,
but is most pronounced for SVMs (green bars). The changes in MSE and MAPE for RF (red
bars) are minuscule, highlighting the robust nature of this ensemble learning method.

129

6.2. Experiments Chapter 6. Analysis

In some cases (NN and SVM), using neither fundamental nor technical data (i.e. only past
prices) yields better results than when using fundamental data, as can be seen from the blue
and green MSE and MAPE bars increasing as we go from “None” to “Fundamental”. But this
doesn’t hold for RF, which stays constant.

Finally, using both fundamental and technical data generally worsens the performance. But
only for NN and SVM; RF still stays at roughly the same values. This worsening of the per-
formance may be ascribed to the large amount of inputs and the models becoming increasingly
complex. Consequently, even though we have taken measures against it, they may be more prone
to overfitting. Fig. 6.29 only shows the test performances, but our program also outputs the
training performances. Consulting these, one sees that the combination of technical and funda-
mental data leads to training performances that are better than when using only one type of
exogenous input or none at all.

The results in Fig. 6.29 were obtained using daily data. The main conclusion was that using
fundamental data did not give better results than using technical. First, this may be ascribed
to the type of fundamental data used here; we considered four indexes that should track some
fundamental quantities (the interest rate and the price of oil and gold). However, a full-fledged
fundamental analysis of a company normally includes an abundance of additional data, including
e.g. key numbers from their budget and account, price, earnings, etc. Similarly, a thorough
analysis of the market includes numerous indicators for the overall state of the economy, e.g.
housing prices, unemployment, debt, spending, interest rates, exchange rates, and much more.
It is very difficult to obtain this type of data with the proper quality. In addition, this type
of data is often quoted less frequently, which brings us to the next point: macro-economic
indicators are related to the state of the economy over long time periods, and fundamental data
and analysis are similarly associated to investments with long time horizons. Thus, using this
type of data is not as adequate for day-to-day prediction as technical data (which is meant to be
very proper for short-term trading). This may be a contributing factor to the conclusion drawn
here. Fundamental data may be more suitable if one uses stock prices and other data quoted on
e.g. a monthly basis.48

Experiment 9

In this section we perform predictions for numerous different assets, including stock indexes,
individual stocks, commodities, exchange rates, etc. The general settings can be summarized as
follows:

Data and time period: Daily prices from 01 Jan 2010 - 01 Jan 2014. Different assets are
considered.

Pre-processing and transformation: 5-period EMA of daily prices; logarithmic returns; nor-
malization to zero mean, unit variance.

Inputs: 4 lags of the response and 4 lags of each of the RSI, MACD, WPCTR, and CHOSC
technical indicators.

Data Split: The effective 976 observations are split into training/test sets of 876/100 (∼ 90%/10%).

48Some of the fundamental indicator datasets used here only go as far back as around eight years. This is a
whole lot of data if quoted on a daily basis. But on a monthly basis it only yields about 80-90 observations. This
is too few observations to make out a properly-sized training set. And the remaining observations would make
an even smaller test set, which makes the performance measures questionable. The aggregation of other, larger
fundamental indicator datasets, and their use in financial forecasting, is a topic for future work.

130

6.2. Experiments Chapter 6. Analysis

Model(s): ν-SVR with RBF kernel, C = 1, γ = 1/ni, ν = 0.9. Neural Network (NN) trained
with Levenberg-Marquardt algorithm and hidden neurons optimized using cross-validation.
Random Forest (RF) with n = 100 trees and leaf size optimized using out-of-bag er-
ror. ARMA(1,1)-GARCH(1,1) with t innovation distribution. Random Walk and Random
Guess models.

The best prediction performance results are shown in Table 6.15 below.49 We only include
the performances on the unseen test set, which is the most interesting. Note also that we only use
the MAPE and Hit Rate measures; MSE is left out since it depends on the scale and magnitude
of prices, which varies for different assets.50

Test MAPE (%) TEST Hit Rate (%)

Asset NN SVM RF AG RW NN SVM RF AG RW RG

NASDAQ 0.184 0.187 0.190 0.185 0.268 77.00 78.00 75.00 68.00 74.00 48.00

SP500 0.176 0.173 0.172 0.169 0.248 78.00 77.00 79.00 76.00 76.00 43.00

AAPL 0.405 0.427 0.394 0.392 0.517 73.00 76.00 71.00 72.00 76.00 39.00

MSFT 0.348 0.353 0.352 0.363 0.521 81.00 78.00 79.00 75.00 76.00 54.00

T 0.246 0.244 0.237 0.236 0.337 76.00 75.00 72.00 73.00 71.00 48.00

F 0.323 0.361 0.347 0.340 0.439 74.00 76.00 77.00 70.00 71.00 46.00

FB 0.673 0.655 0.731 0.642 0.927 80.00 80.00 86.00 79.00 81.00 47.00

GLD 0.324 0.321 0.303 0.307 0.414 76.00 77.00 74.00 74.00 73.00 52.00

Table 6.15: Experiment 9: Best prediction performances (on unseen test set) for different assets.
NN: Neural Network. SVM: Support Vector Machine. RF: Random Forest. AG: ARMA-
GARCH. RW: Random Walk. RG: Random Guess. See the summary in the text for details.

From Table 6.15 we see that our models (NN, SVM, RF, and AG) all outperform the Random
Walk benchmark in terms of the MAPE measure. For each respective asset, the four models yield
very similar MAPE results; e.g. ∼ 0.19% for NASDAQ, ∼ 0.24% for AT&T, etc. In each case,
the Random Walk benchmark gives a noticeably larger MAPE; e.g. 0.27% for NASDAQ and
0.34% for AT&T.

In terms of Hit Rate accuracy, the four models also yield extremely good results (at first
sight, at least) with Hit Rates upwards of 80%. This means that the models correctly predict
the up/down price movement direction more than three out of four times! Indeed, the NN model
shows a Hit Rate of 81% for the Microsoft stock, and the RF model gives a value as high as
86% for the Facebook stock! However, this initial excitement somewhat wanes when comparing
the results to those obtained with the Random Walk benchmark. This benchmark model uses
today’s price as the prediction of tomorrow’s price. So, when this model gives a Hite Rate of e.g.
74% (as it does for NASDAQ), it means that the stock price actually increased 74% of the time
in the unseen test set. The SVM Hit Rate of 78% for NASDAQ thus means that the model only
correctly predicted an additional 4% of the up/down movements. In almost all cases, the NN,
SVM, and RF Hit Rates are a few percentage points larger than the Random Walk benchmark.
Although the models are not significantly better than the benchmark in this regard, we still
stress the fact that such high Hit Rates are rather good. Indeed, compared to a simple “coin
toss” guess on the price direction (as given by the Random Guess benchmark model)51, the NN,

49The abbreviations for the assets are: NASDAQ = NASDAQ Index, SP500 = S&P 500 Index, AAPL = Apple,
MSFT = Microsoft, T = AT&T, F = Ford, FB = Facebook, GLD = Gold.

50MAPE also varies across different assets, but it is easier to interpret because it measures the percentage
deviation.

51Note that we have implemented the Random Guess benchmark as an actual “coin toss”, which is why the
Hit Rates deviate slightly from 50%. In the event of infinite observations, this number naturally tends to 50%.

131

6.2. Experiments Chapter 6. Analysis

SVM, RF, and AG models are significantly better. Note also that the three machine learning
methods (NN, SVM, RF) generally also give better Hit Rate performances than the conditional
mean and variance model (AG).

To summarize, the models considered here yield Hit Rates comparable (but still a little better)
than the Random Walk benchmark, and MAPE values that are significantly better. That the
Hit Rates are comparable means that our models correctly predict tomorrow’s price direction
when it is the same as today; and that the models most often fail when this is not so (i.e., in the
event of a sudden move in the opposite direction—a reversal). The latter part is crucial, since
this is something that would be particularly useful. Failure of the models in this regard thus
question their applicability for practical purposes, as well as the predictability of the markets in
general.

Experiment 10

In this last experiment we will make use of our oscillator model from Section 3.4. We consider
Standard & Poor’s 500 Index, using about 100 observations of daily prices.52 This corresponds
to a time period of roughly 5 trading months.

The prediction model used here is the linear one governed by Eq. (3.7). It contains two
parameters: the EMA period n of the price level p∗; and the angular frequency ω (or, equivalently,
the period T). After trying different values we find that good results (for this particular case)
are obtained for n = 10 and T = 20.53

Table 6.16 shows the quantitative performance results. Here we also compare the oscillator
model (OM) to the two benchmarks. Fig. 6.30 plots the predictions and the actual data.

Model MSE MAPE Hit Rate
OM 27.26 0.33 % 80.61 %
RW 40.59 0.46 % 79.59 %
RG N/A N/A 50 %

Table 6.16: Experiment 10: Performance results for the oscillator model (OM) with n = 10 and
T = 20. RW and RG are the Random Walk (”tomorrow equals today”) and Random Guess
(”coin flip”) benchmarks, respectively.

52As in earlier experiments, the raw, erratic prices are smoothed using a 5-period EMA.
53A better approach to finding the optimal parameters—which will be pursued in future work—is to use some

subset of the data for model selection, searching parameter space for the combination yielding the lowest error
compared to the actual data. This is somewhat similar to the training phase of machine learning models.

132

6.2. Experiments Chapter 6. Analysis

0 20 40 60 80 100
1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220
Oscillator Model − Predicted and actual stock prices

Time (trading days)

S
to

ck
 p

ric
e

Predicted
Actual

Figure 6.30: Experiment 10: Oscillator model. Predicted prices (red) and actual prices (blue)
for ∼ 100 daily observations of the S&P 500 Index.

First off, we see from Table 6.16 that the OM model is far better than the simple RG
benchmark (which basically just flips a coin to guess whether the price will move up or down).
The OM model’s Hit Rate is as high as almost 81%, meaning that it correctly predicts the
movement direction more than 4 times out of 5. This is truly excellent. And had it not been for
our inclusion of the RW benchmark, we would get the wrong picture and think the model far
better than it actually is (though it still is quite good). For as it happens, the RW benchmark
shows a Hit Rate of almost 80%. Due to its “tomorrow equals today” nature, this means that the
day-to-day price directions were actually the same almost 4 times out of 5. So, using this simple
prediction rule nets a similar result as our model—but only in terms of the Hit Rate. Turning
to the MSE and MAPE measures (lower are better), our OM model significantly outperforms
the RW benchmark. The lower MSE and MAPE values indicate that the model’s predictions are
much more precise than the benchmark’s, and closer to the actual prices.54

Fig. 6.30 gives a visual feel for how close the predicted and actual prices are. We see that
there is splendid agreement when the price is moving in an even trend; e.g. in the first 35 days
(up-trend), between days 55-65 (down-trend), and from day 75 until the end (up-trend, down-
trend, up-trend). However, when the price is moving in a more erratic way, with sudden rises
or drops, the OM model has a harder time keeping up. In these cases (e.g. between days 35-50,

54These results—comparable Hit Rate, but better MSE and MAPE, for our model compared to the RW
benchmark—were also what we obtained for our NN, SVM, and RF models in the previous experiments.

133

6.2. Experiments Chapter 6. Analysis

50-55, and 65-75), the model’s predictions are quite sharp and “spiky”; this is mostly where the
model gets the direction wrong, and also the main contribution to the errors.

In conclusion, our OM model seems to exhibit some of the same qualities and results as our
NN, SVM, and RF models. First, our models, whilst vastly outperforming the simple RG bench-
mark, yield comparable Hit Rates to the RW benchmark. However, they perform significantly
better in terms of the more quantitative, refined MSE and MAPE measures. Second, like the NN,
SVM, and RF models, our OM model performs best in those periods where the price exhibits a
general trend, and poorest when the price fluctuates erratically back and forth.

However, the good results for the OM model indicate that there might be some use to mod-
elling stock prices depending on their movement relative to some average, base price level (as is
the essence of our OM model). And, seeing that we have here used only the simple, linear ver-
sion of the model, there might be even better results to obtain by using the extended, non-linear
version of the model, which we also described back in Section 3.4. This will be an interesting
subject for future work.

134

Chapter 7

Conclusion

This thesis has considered financial forecasting, and more specifically the problem of stock market
prediction. Initially, we described the financial markets and the fundamental question of whether
they are predictable or not. We argued for different opinions on this delicate matter by discussing
the Efficient Market Hypothesis, the evolution of the markets, and the technological advances
and improvements. Furthermore, we discussed several areas in physics for which forecasting is
a vital thing. We raised some striking conceptual and methodological similarities between these
fields and financial forecasting, whilst also discussing the crucial differences that really set the
disciplines—and perhaps also the possibility of prediction—apart.

After reviewing and discussing the relevant theory, we analysed daily data of the popu-
lar NASDAQ Index and performed predictions using ARMA-GARCH models, Artificial Neural
Networks, Support Vector Machines, and Random Forests. Our approach to the prediction task
was rooted mainly in technical analysis of stocks; that is, we used lagged values of both prices
and a wide variety of technical indicators to predict the next period’s stock price.1

We summarize our results and conclusions below.

• Through a computation of statistical properties and an exploratory data analysis of the
daily returns of the NASDAQ Index (Sections 6.1.1 and 6.1.2), we find that the returns
are not Gaussian—contrary to common assumption. The problem is the heavy tails of the
observed distribution; the probability of extreme events (especially the risk of large losses)
is significantly underestimated by the Gaussian model. This has vital implications for risk
management. Our results indicate that the Student’s t distribution provides a much better
fit.

• In a quantitative and qualitative time series analysis (Section 6.1.3), we find empirical
evidence of autocorrelation and conditional heteroscedasticity (volatility clustering) in the
daily data of the NASDAQ Index. This has important implications for the potential pre-
diction of the asset; the presence of autocorrelation indicates that recent past events are
correlated to current events, and thus that recent past data may be used (to varying degrees
of success) for prediction. Similarly, the presence of conditional heteroscedasticity implies
that the volatility—a measure of risk—is far from constant in time, but instead gathers in
clusters.

1Regarding predictions, our focus was on one-step ahead prediction, but we have also performed a little bit of
multi-step ahead prediction. Regarding data frequency, our focus was daily data, but we have also made a few
experiments with weekly and monthly data.

135

Chapter 7. Conclusion

• We have constructed composite ARMA-GARCH models for the conditional mean and
variance of the daily NASDAQ data (Section 6.1.4), and performed AIC- and BIC-based
model selection to obtain the optimal parameters. Diagnosing the models, we find that
a Student’s t distribution is more suitable for the innovation process than the Gaussian,
in accord with our observation of the heavy-tailed empirical distribution of asset returns.
For multi-step ahead prediction (100 days into the future), we find that the optimized
model correctly predicts the future overall trend of the daily NASDAQ prices. For one-
step ahead prediction, we find that the optimized model correctly predicts the up/down
movement direction 68% of the time. The average error (RMSE) is around 9.5 US Dollars,
corresponding in percentage (MAPE) to less than 0.19%. The day-to-day predictions are
good, but we make a crucial observation; the model’s correct predictions mainly occur
when the price is trending and headed in a particular direction.

• Based on parameter suggestions from the literature as well as arbitrary choices, we have
trained a simple Artificial Neural Network for predicting and identifying patterns in daily
NASDAQ data (Section 6.1.5), and diagnosed the training process using a variety of visual
tools. Testing the model on unseen data yields suboptimal performances, indicating the
need for proper data pre-processing, choice of inputs and network architecture, etc. We
find evidence of a crucial caveat of using raw daily data; the model uses the current day’s
stock price as the prediction for tomorrow. That the model, during its training process, has
learned this to be the best relationship may be considered an indication that the markets
cannot be predicted, and consequently may be regarded as support for the Efficient Market
Hypothesis—especially since the “tomorrow equals today” relation follows from the weak
form of the EMH as we discuss for in our Random Walk model (Section 2.1.1). Finally,
we discuss (i) how especially the number of hidden neurons may result in overfitting,
and (ii) how the random weight initialization causes identical network architectures to
produce different results. As implemented in our written computer programs, we amend
these problems by (i) performing cross-validation and (ii) training a number of identical
networks and choosing the one with best validation performance.

• Training and testing Support Vector Machines for predicting the NASDAQ Index prices
(SVM regression, Section 6.1.6) and up/down direction movement (SVM classification,
Section 6.1.7), we analyse the effects of varying the model parameters, including C, γ, ν,
ε, kernel functions, etc. For our application, we find that the Radial Basis Function gives
the best results. Our analyses and findings also exemplify the common machine learning
problem of overfitting ; the cost parameter C, in particular, is found to capture the trade-off
between simplicity and complexity, with large C potentially giving rise to overfitting, in
accord with theory and other research. We find that, for a particular input combination,
varying γ does not change the results significantly; the most important thing is to change
it according to the number of inputs. For ε-SVR, small ε are found to make the potential
overfitting even more pronounced, also in agreement with other research. For ν-SVM, we
find that large values (ν ∼ 0.9) generally achieves the best balance between underfitting
and overfitting, and thus the best generalization ability. In our computer programs we have
implemented cross-validation to find the optimal parameters. In regards to predicting the
up/down movement direction, we find that SVM classification does not yield better results
than SVM regression; the latter is thus the method of choice since it contains additional
information and ways to assess prediction performance.

• Comparing our prediction results to the example of predicting a smooth sine wave vs. one
with random noise (Section 6.1.6), we argue that the erratic daily stock price fluctuations

136

Chapter 7. Conclusion

may to some extent be regarded as random. This is further supported by the fact that our
models often use the current period’s value as the prediction for the next period—which
is exactly the idea behind our Random Walk model that has close ties to the Efficient
Market Hypothesis. Again, our results may thus be regarded as support for the EMH and
unpredictability of the markets. Or, it may be that our models are simply not advanced
enough, and that the inputs (lagged prices and technical indicators) lack predictive power.

• We have trained and tested Random Forests and analysed the effects of varying the model
parameters (Section 6.1.8). In accord with theory, we find for our application that larger
forests generally produce better results, but with diminishing gains. We also analyse the
number of randomly chosen inputs and the leaf size, and find optimal values; but, since
optimal values of these parameters depend on the case at hand, we have implemented an
automatic optimization procedure in our program. Moreover, we explore the method’s
straightforward approach to feature importance, finding that a reduced, simpler model
performs at least as good as the full model. However, the predictions still suffer from the
recurrent problem of being “shifted” from the actual values, indicating that the model often
uses today’s price as the prediction for tomorrow.

• In numerous experiments (Section 6.2) we try to reduce the effect of the noisy, erratic
nature of daily data by smoothing it. This generally gives much better performances, but
also slightly orients our predictions towards trend.

• In Experiment 1 (Section 6.2) we find that our NN, SVM, and RF models perform ex-
ceptionally well—not only on the training set but also on the unseen test set, indicating
that our measures against overfitting (cross-validation and out-of-bag optimization) have
worked. The three methods show have similar performances with only marginal differences,
making it hard to point a winner among them. Each model correctly predicts about 75%
of the up/down movements, with small deviations from the actual prices, as indicated by
the low MSE and MAPE values. Compared to the benchmarks, our models significantly
outperform the simple Random Guess (”coin flip”) model. The Random Walk (”tomorrow
equals today”) model on the other hand, achieves a similarly large Hit Rate, indicating
that the good performance of our models may be ascribed to the fact that the stock often
rose or fell multiple days in a row. However, in terms of the more quantitative MSE and
MAPE measures, our models yield significantly lower values the Random Walk benchmark,
thus giving a much better precision in the predictions.

• In Experiment 2 (Section 6.2), where we vary the number of lags used of the input variables,
we find that including at least one lag of the response (i.e. the most recent stock price)
significantly improves performance. Including additional response lags generally improves
training performance, but not always the test performance (which is the most important
part). For the exogenous input (technical indicators in our case), we find that the number of
lags is not as important as that first lag of the response variable. In some cases, including
technical indicators does not even improve performance by a significant amount.2 This
indicates that, if technical indicators can or should be used, then they should be so in
a more advanced way; e.g. by programming their interpretations and making a trading
system that gives buy or sell signals depending on the values of one or more indicators.
Regarding the fact that the first response lag is the most important, this is very interesting
because our models often use today’s price (i.e. the first response lags) as their prediction

2We point out that this also depends on how the technical indicator data is processed; for example, in Ex-
periment 2 we only normalized them, whereas in Experiment 4 we show how differencing them yields better
performances.

137

Chapter 7. Conclusion

for tomorrow. So, even though we have tried using even more inputs, the models most often
determine that the best thing, to some extent, is the “tomorrow equals today” relation. Of
course, they do not use this relation exactly (the Random Walk benchmark does, and our
models outperform it), but they seem to use part of it sometimes, and it seems that this is
the best we are able to do in regards to prediction. So, since this relation is so close to the
Random Walk model (and thus the EMH), and since we can’t to better prediction-wise, the
results may to some extent be regarded as empirical support for the EMH (weak version, at
least) and thus the unpredictability of the markets. We emphasize, however, that another
possible conclusion is that our prediction models are simply not advanced enough, and that
more data, better models, etc. may or may not be able to predict the markets.

• Experiment 3 (Section 6.2) considers different exogenous inputs, and we find that adding
additional technical indicators does not necessarily improve performance; it varies with
the particular technical indicator under consideration. Thus, if using technical indicators,
choosing the right ones is important. We also find that adding lags of the response vari-
able most often improves results, indicating that the price data itself might possess most
predictive power. However, it is remarkable to see that using technical indicators alone
(without lagged response data) can yield good performances.3

• In Experiment 4 (Section 6.2) we find that differencing the exogenous input data yields
better results than when using their non-differenced form. This is clear evidence of the
importance of proper data handling, pre-processing, and transformation when it comes
to machine learning methods; stationary data (as obtained by differencing) is much more
suitable than non-stationary data.

• Experiment 5 (Section 6.2) investigates the effect of the amount of training data (how much
historical stock data we use to train the models). We find that using too much training
data is not good for any of the NN, SVM, and RF models; it does not significantly improve
performance (in many cases quite the contrary) but only serves to increase the computation
time. For our application, we find that using about 3 years’ worth of historical stock data
yields the best performance.

• Experiment 6 (Section 6.2) analysed which combinations of technical indicators gave the
best performances, and thus which indicators possessed most predictive power. Out of
the total seven indicators considered, we find the most prominent ones to be Momentum,
RSI, William’s % R, and Chaikin Oscillator. The very best exogenous input combination
consisted of three technical indicators—and this was the case for all three machine learning
methods. And the previous four indicators were exactly the most recurrent ones, and thus
the ones found to exhibit most predictive power.

• In Experiment 7 (Section 6.2) we analysed the use of weekly and monthly data (instead
of daily data). Our findings indicate that using weekly or monthly data does not relieve
the problems with prediction encountered with daily data. This is seen quantitatively
from the fact that our models’ Hit Rate performances are still not significantly better than
the Random Walk benchmark (although our models do still outperform the benchmark in
terms of MSE and MAPE). And we see it qualitatively from the plots where the models fail
to properly predict the stock price when it makes a sudden significant move in the opposite
direction, away from the current trend.

3This may contradict the conclusions from the previous bullet on Experiment 2. However, it is important to
note in this regard that we differenced the exogenous inputs in Experiment 3, which evidently made these inputs
more significant—as we also find in Experiment 4. Thus, technical indicators are not useless; it just all comes
down to proper data pre-processing, etc.

138

Chapter 7. Conclusion

• In Experiment 8 (Section 6.2) we tried to use some fundamental data (interest rate, gold
and oil price, etc.) as exogenous inputs. Our main finding was that using fundamental data
yielded poorer results than using technical data. However, this may largely be ascribed to
the humble type and amount of fundamental data used; a full-fledged fundamental analysis
would include an abundance of additional data—which is very difficult to come by in the
proper type and quality. Fundamental analysis is also often associated with long-term
investments, which somewhat goes against our use of daily data; monthly data would be
better, but there are not sufficient observations available (the fundamental datasets did
not go sufficiently far back in time) to properly train our machine learning methods.4

• In Experiment 9 (Section 6.2) we performed predictions for a variety of different financial
assets. We find that our NN, SVM, and RF machine learning methods, and our ARMA-
GARCH (AG) conditional mean and variance model, all outperform (by far, with Hit Rates
upwards of 80%) the simple Random Guess (”coin flip”) benchmark. The Random Walk
(”tomorrow equals today”) benchmark, however, yields a similarly high Hit Rate, which
slightly reduces the impressiveness of our models’ performances. Our models do achieve
much lower MAPE values, indicating that the predictions are still significantly more refined
and precise than the benchmark. Comparing the four models to each other, NN, SVM,
and RF generally yield better Hit Rates than AG, but roughly similar MAPE values. NN,
SVM, and RF often yield very similar performances; however, in terms of computation
times, RF is generally the fastest, followed by SVM and then NN.

• In Experiment 10 (Section 6.2) we made predictions using the linear version of our oscillator
model (Section 3.4). The results are much the same as for our NN, SVM, RF, and AG
models: first, a Hit Rate much better than the simple “coin flip” benchmark, but similar
(or slightly better) than the Random Walk (“tomorrow equals today”) model; second, MSE
and MAPE values much better than the RW benchmark; and third, a performance that is
best in periods where the price is trending, and poorest when the price fluctuates erratically
back and forth. Still, the good results indicate that there might be some use to modelling
stock prices depending on their movement relative to some average, base level (as is the
essence of our OM model). And, seeing that we have here used only the simple, linear
version of the model, there might be even better results to obtain by using the extended,
non-linear version of the model (also described in Section 3.4).

Finally, regarding the predictability of the markets, the fact that we obtain Hit Rates compa-
rable to the RW benchmark means that our models correctly predict tomorrow’s price direction
when it is the same as today; and that the models most often fail when this is not so (i.e., in
the event of a sudden move in the opposite direction—a reversal). The latter part is crucial,
since this is something that would otherwise be particularly useful. Failure of the models in this
regard thus question their applicability for practical purposes, as well as the predictability of the
markets in general. This may be viewed as support for the weak form of the Efficient Market
Hypothesis5 On other hand, the fact that our models outperform the RW/EMH benchmark in
some regards (MSE and MAPE), and thus yield more refined and precise predictions, may work
to argue in the opposite direction. It all comes down to how performance and predictability is
measured6, and where we put the threshold between failure and success.

4We note that the use of fundamental data was really beyond the scope of this thesis, and we save it as a
candidate for future research.

5The weak form was the one that was linked to our Random Walk benchmark model.
6As we will discuss shortly, one of our primary topics for future work is the use of a performance measure more

suitable for practical application.

139

Chapter 7. Conclusion

On a final note, the models employed here have only been so advanced, limited in part by
time and resources (e.g. machinery and computation power). More advanced models may or
may not be more successful at predicting the markets.7

Uses for Our Results

Our results can be used for a variety of purposes in both practice and research. First, take our
finding that asset returns are not Gaussian—in contrast to many assumptions—and that a better
model is provided by e.g. the t distribution. This has important implications especially in risk
management. For example, if a researcher wants to simulate asset returns for an experiment,
or a practitioner wants to assess the risk of an investment (be it a private investor doing so for
himself or a professional doing it for a client), then the assumed Gaussian model will produce
wrongful results; although the body of the empirical distribution is adequately modelled by the
assumed theoretical distribution, the same is not at all true for the tails. The result is that
the simulated returns will contain much fewer extreme events than what is actually observed in
reality. Similarly, the assessed risk of an investment will be significantly underestimated, giving
the practitioner a flawed view of the actual circumstances and a result that might be inconsistent
with his/her investment and risk profile. As we have shown here, the t distribution provides a
better model that much more adequately accounts for the larger probability of extreme events.

We have also made numerous model-specific experiments that explore optimal settings and
parameters, the models’ strengths and possibilities (e.g. easy feature importance and validation
for Random Forests), as well as their limits (in particular the overfitting problem). Our results
in this regard may help other researchers studying the same field, making them aware of which
settings (e.g. training algorithms for Neural Networks, kernel functions for SVMs, etc.) and
parameter values might work better than others, perhaps enabling them to save precious time.
Similarly, practitioners employing the same methods may be able to optimize their prediction
models and consequently improve their trading systems.

The same goes for our numerous additional experiments. Our results in this regard may
give other researchers and practitioners some helpful tools and ideas as to what works best
when it comes to e.g.: how much historical data to use for training the models, which technical
indicators to use as predictors, how many lags/past values to use for the inputs, etc. Our results
and discussions may also help with the initial step of which method and model to use—a choice
that depends on the user’s needs and wishes for e.g. accuracy (where we find that the models,
when sufficiently optimized, produce similar results) and speed/computation time (where we find
much greater differences between the models).

Future Work

Financial forecasting, and even the subtype of stock market prediction, is a truly massive dis-
cipline with numerous different aspects and facets. The limited scope of this study obviously
means that we have had to focus on a selection of areas. There are certain parts of the thesis
that we would like to extend and analyse in even greater detail, and there are likewise completely
new facets that we would like to explore. Our subjects for future work and research are listed
below:

7Some of our suggestions (to be tried in our future work) for making the models more advanced include using
a much wider array of exogenous inputs (e.g. technical and fundamental indicators, etc.) from which to find
the optimal combination. One could also employ newer, more advanced versions of the methods which often
surface in the present literature. Also, one could use the prediction models in a slightly different way: as part of
a trading system for buying and selling at the right time. This renders it impossible to use MSE and Hit Rate
as performance measures, but leaves us with a measure that is much more adequate for practical applications, as
discussed in one of the bullets in the “Future Work” section below.

140

Chapter 7. Conclusion

• Investigate stock market crashes and their prediction using e.g. log-period power laws and
other models inspired by e.g. physics and the analysis and prediction of natural disasters
and catastrophes. We touched upon this back in Section 3.2.

• Make more use of our oscillator-inspired model for stock market prediction, both the simple,
linear version (as used in e.g. Experiment 10 in Section 6.2) but especially also the extended,
non-linear version that had close ties to the Duffing oscillator (as we described in Section
3.4).

• Employ classification models from machine learning for categorizing stocks—e.g. in a
portfolio—as “good” or “bad” investments based on a number of criteria. These criteria
may be of a fundamental or technical nature; e.g. a company’s price, earnings, debt, etc.,
or the value and interpretation of one or more technical indicators measuring whether the
stock e.g. is overbought or oversold. For this purpose one could use e.g. Artificial Neural
Networks, Support Vector Machines, and Random Forests, all of which have been put to
extensive use here.

• Multi-step ahead prediction and generally forecasting over longer time periods. Here, we
have mainly focused on one-step ahead prediction using daily data, i.e. day-to-day pre-
diction. It would be interesting—and perhaps with better results to follow—to explore in
more detail the possibility of forecasting the general market direction over longer time hori-
zons. Of course, this requires a downgrading of expectations, since we will be considering
the general trend (and not prices). But, with short-term day-to-day prediction seeming so
difficult—as our results indicate—this long-term approach may be more plausible. It may
also be more adequate from a practical point of view; buying and selling often, as required
by day-to-day prediction, incurs massive transaction costs. Investing in the long-term does
not.

• Forecasting using tools and knowledge from fundamental analysis. Here, we have mainly
used technical indicators. It would be interesting to properly use fundamental data for
forecasting, including e.g. company-related data from budgets and balance accounts, or
macro-economic indicators for the overall state of the economy. This is related to the
previous point on multi-step ahead prediction and long-term forecasting, since fundamental
data is generally associated to changes and effects in the long term (several months or years).

• A more practical approach to stock market prediction. In this study, we have approached
the problem from a more research-oriented perspective, using performance measures such
as MSE and MAPE (average deviation) and the Hit Rate (movement direction accuracy)
to assess our models and their predictions. However, a performance measure that may be
more adequate for practical application is the profit, i.e. how much money the prediction
models and trading systems are making. This is really what it all comes down to in business
and industry. That the predictions lie close to the actual values, and that the models have
a high accuracy, are only secondary; the primary concern (in practice) is money. And this
goes for both professionals and private investors alike; low MSEs and MAPEs and high
Hit Rates do not necessarily put food on the table—only money in the bank does. It is
important to note that good values of our performance measures may very well also yield a
good profit—but not necessarily; for the performance measures may tell different stories8.

8For example, we may observe an excellent Hit Rate of almost 100% while at the same time having e.g. a
sky-high MSE. As an example, consider a stock price currently at 100. Our prediction for the next period is, say,
125, but the actual price only ends up increasing to 105. The model correctly predicts the increase in price, but
it does so with quite a large deviation.

141

Chapter 7. Conclusion

Also, when we consider practical application and profit, it is imperative that we also take
into account such things as transaction costs. If one buys and sells very often, transaction
costs can significantly reduce one’s profit, and even lead to losses. For future work, it would
therefore be very interesting—and extremely useful—to consider profit as the performance
measure.

• In relation to the previous bullet on a more practical approach, it would also be interesting
to use the methods and models in a different way: Instead of performing e.g. day-to-day
predictions, we could use the models as part of a trading system. This would entail a
deeper, more thorough use of the technical indicators, as we would program their actual
interpretations for identifying trends and signals, etc. A method such as one of those
used here could then be used to make the final decision of if and/or when to buy or sell.
With such a system, we can no longer use performance measures such as the MSE and Hit
Rate—only the profit. But from a practical point of view, this is also the most adequate,
as discussed above. This approach also pulls us away from the fundamental question of the
predictability of the markets, and instead deals with beating the markets. This is a highly
interesting distinction—predicting vs. beating the markets—for they are not necessarily
the same. Depending on definitions, we argue that “Predict =⇒ Beat”. I.e., if one can
predict the markets, then one can also beat9 them—but not the other way around. The
former follows naturally; if one can predict the future prices to a sufficient extent, then
one can beat the market. To see the latter, note that one may beat the market via proper
timing, i.e. buying and selling at the right times10. But buying and selling at the right
times is not directly equivalent to predicting the markets (in the sense that they predict
the future prices). This is an interesting distinction that we will explore more thoroughly
in our future work.

Christian Birch Okkels
May 2014.

9By beating, we mean making a profit greater than what a “buy and hold” (buy the stock and keep it) strategy
would have earned.

10Some of the large investment banks and hedge funds succeed at this, using highly customized specialist trading
systems.

142

Bibliography

[1] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[2] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning,
Springer, 2008.

[3] Rosario N. Mantegna, H. Eugene Stanley, An Introduction to Econophysics - Correlations
and Complexity in Finance, Cambridge University Press, 2000.

[4] Mark H. Holmes, Introduction to Numerical Methods in Differential Equations, Springer,
2007.

[5] J. D. Lambert, D. Lambert, Numerical Methods for Ordinary Differential Systems: The
Initial Value Problem, Wiley, 1991.

[6] C. Man-Chung, W. Chi-Cheong, L. Chi-Chung, Financial Time Series Forecasting by Neu-
ral Network Using Conjugate Gradient Learning Algorithm and Multiple Linear Regression
Weight Initialization, Department of Computing, Hong Kong Polytechnic University.

[7] B. Junyou, Stock Price Forecasting using PSO-trained Neural Networks, 2007.

[8] K. Kim, I. Han, Genetic Algorithms Approach to Feature Discretization in Artificial Neural
Networks for the Prediction of Stock Price Index, Expert Syst. Appl. 19 (2), pp. 125-132,
2000.

[9] C. N. W. Tan, An Artificial Neural Networks Primer with Financial Applications in Financial
Distress Prediction and Foreign Exchange Hybrid Trading System, School of Information
Technology, Bond University.

[10] I. Kaastra, M. Boyd, Designing a Neural Network for Forecasting Financial and Economic
Time Series, Neurocomputing, 10, pp. 215-236, 1996.

[11] E. Kalyvas, Using Neural Networks and Genetic Algorithms to Predict Stock Market Returns,
2001.

[12] C. Siriopoulos, R. N. Markellos, K. Sirlantzis, Applications of Artificial Neural Networks in
Emerging Financial Markets, 1996.

[13] S. Haykin, Neural Networks, A Comprehensive Foundation, Prentice-Hall, Inc., New Jersey,
USA, 1994.

[14] J. Yim, A Comparison of Neural Networks with Time Series Models for Forecasting Returns
on a Stock Market, RMIT Business Working Paper Series, 7, August, 2002.

143

Bibliography Bibliography

[15] S. Walczak, An Empirical Analysis of Data Requirements for Financial Forecasting with
Neural Networks, Journal of Management Information Systems, 17, 4, pp. 203-222, 2001.

[16] A. Abounoori, H. Mohammadali, N. Alikhani, E. Naderi, Comparative Study of Static and
Dynamic Neural Network Models for Nonlinear Time Series Forecasting, Munich Personal
RePEc Archive, 2012.

[17] S. Kulkarni, I. Haidar, Forecasting Model for Crude Oil Price Using Artificial Neural Net-
works and Commodity Futures Prices, 2009.

[18] M. Majumder, A. Hussian, Forecasting of Indian Stock Market Index Using Artificial Neural
Network.

[19] G. Zhang, B. E. Patuwo, M. Y. Hu, Forecasting with Artificial Neural Networks: The State
of the Art, International Journal of Forecasting, 14, pp. 35-62, 1998.

[20] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: The
Rprop algorithm, Proceedings of the IEEE International Conference on Neural Networks, pp.
586-591, IEEE Press, 1993.

[21] M. Moller, A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural
Networks, Vol. 6, pp. 525533, 1993.

[22] P. Gill, W. Murray, M. Wright, Practical Optimization, 1981.

[23] M. T. Hagan, M. Menhaj, Training feed-forward networks with the Marquardt algorithm,
IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1999, pp. 989993, 1994.

[24] L. Cao, F.E.H. Tay, Financial Forecasting using Support Vector Machines, Neural Comput-
ing and Applications, 10, pp. 184-192, 2001.

[25] K. Kim, Financial Time Series Forecasting using Support Vector Machines, Neurocomput-
ing, 55, pp. 307-319, 2003.

[26] W. Huang, Y. Nakamori, S. Wang, Forecasting Stock Market Movement Direction with
Support Vector Machines, Computers & Operations Research 32, pp. 2513-2522, 2005.

[27] L. Yu, S. Wang, K.K. Lai, Mining Stock Market Tendency using GA-based Support Vector
Machines, LNCS 3828, pp. 336-345, 2005.

[28] J. Mager, U. Paasche, B. Sick, Forecasting Financial Time Series with Support Vector Ma-
chines Based on Dynamic Kernels, 2007.

[29] Training nu-Support Vector Regression: Theory and Algorithms, Chih-Chung Chang, Chih-
Jen Lin, National Taiwan University.

[30] C. J. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data
Mining and Knowledge Discovery, 2, 121-167, 1998.

[31] V. N. Vapnik, A. Y. Chervonenkis, Theory of Pattern Recognition: Statistical Problems of
Learning, 1974.

[32] MATLAB Toolboxes, http://www.mathworks.se/help/index.html, May 2014.

[33] C. Chang, C. Lin, LIBSVM: A Library for Support Vector Machines, ACM Transactions on
Intelligent Systems and Technology, pp. 1-27, 2011.

144

Bibliography Bibliography

[34] http://www.svms.org/anns.html, Support Vector Machines, May, 2014.

[35] L. Breiman, Random Forests, 2001.

[36] James D. Hamilton, Time Series Analysis, Princeton University Press, 1994.

[37] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis - Forecasting and Control,
Prentice-Hall, 1994.

[38] R. H. Shumway, D. S. Stoffer, Time Series Analysis and Its Applications, Springer, 3rd
edition, 2011.

[39] S. Bisgaard, M. Kulahci, Time Series and Forecasting by Example, Wiley, 2011.

[40] R. S. Tsay, Analysis of Financial Time Series, Wiley, 2nd edition, 2005.

[41] G. E. P. Box, D. A. Pierce, Distribution of Residual Autocorrelations in Autoregressive-
Integrated Moving Average Time Series Models, Journal of the American Statistical Associ-
ation, 65, pp. 15091526, 1970.

[42] G. Ljung, G. E. P. Box, On a Measure of Lack of Fit in Time Series Models, Biometrika
66, pp. 6772, 1978.

[43] Robert F. Engle, Autoregressive Conditional Heteroscedasticity with Estimates of Variance
of United Kingdom Inflation, Econometrica, 50, pp. 987-1008, 1982.

[44] R. F. Engle, V. K. Ng, Measuring and Testing the Impact of News on Volatility, Journal of
Finance, 48, pp. 1749-1778, 1991.

[45] T. Bollerslev, Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econo-
metrics, 31, pp. 307-327, 1986.

[46] C. B. Okkels, The Distribution of Stock Market Returns - An Analysis of Distribution Models
for the Description of Financial Asset Return Data University of Copenhagen, 2013.

[47] Stefan Zemke, On Developing a Financial Prediction System: Pitfalls and Possibilities,
Stockholm University and Royal Institute of Technology, Department of Computer and Sys-
tem Sciences, Sweden.

[48] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political
Economy, 81, 3, pp. 637-654, 1973.

[49] W. G. Tomek, S. F. Querin, Random Processes in Prices and Technical Analysis, Journal
of Futures Markets, 4, pp. 15-23, 1984.

[50] D. J. Acheson, Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing
Science Series, Oxford University Press, 1990.

[51] John D. Cox, Storm Watchers, John Wiley & Sons, Inc., pp. 222-224, 2002.

[52] Edward N. Lorenz, Deterministic Non-periodic Flow, Journal of the Atmospheric Sciences
20, 2, pp. 130-141, 1963.

[53] P. Chen, A Random Walk or Color Chaos on the Stock Market? Time-Frequency Analysis
of S&P Indexes, Studies in Nonlinear Dynamics & Econometrics, 1, 2, 2996.

145

Bibliography Bibliography

[54] David A. Hsieh, Chaos and Nonlinear Dynamics: Application to Financial Markets, 1990.

[55] W. Brock, C. Sayers, Is The Business Cycle Characterized by Deterministic Chaos?, Journal
of Monetary Economics, 22, pp. 71-90, 1988.

[56] NASA, The Sunspot Cycle, http://solarscience.msfc.nasa.gov/SunspotCycle.shtml, May
2014.

[57] K. Petrovay, Solar Cycle Prediction, Living Rev. Solar Physics, 7, 6, 2010.

[58] David H. Hathaway, Robert M. Wilson, Geomagnetic activity indicates large amplitude for
sunspot cycle 24, Geophysical Research Letters, 33, 18, September 2006.

[59] G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model,
Neurocomputing, 50, pp. 159-175, January 2003.

[60] K. H. Schatten et al. Using Dynamo Theory to predict the sunspot number during Solar
Cycle 21, Geophysical Research Letters, 5, 5, pp. 411-414, May 1978.

[61] G. Zhang, E. P. Patuwo, M. Y. Hu, Forecasting with artificial neural networks: The state
of the art, International Journal of Forecasting, 14 1, pp. 35-62, March 1998.

[62] R. A. Calvo, H. A. Ceccato, R. D. Piacentini, Neural network prediction of solar activity,
Astrophysical Journal, 1, 444, pp. 916-921, 1995.

[63] R. Qahwaji, T. Colak, Automatic Short-Term Solar Flare Prediction Using Machine Learn-
ing and Sunspot Associations, Solar Physics, 241, 1, pp. 195-211, March 2007.

[64] Jing-Xin Xie, et al. A hybrid adaptive time-delay neural network model for multi-step-ahead
prediction of sunspot activity, International Journal of Environment and Pollution, 28, 3-4,
pp. 364-381, 2006.

[65] National Research Council, Advancing the Science of Climate Change, Washington, DC:
The National Academies Press, 2010.

[66] J. B. Drake, Predicting Climate Change, http://web.ornl.gov/info/ornlreview/rev28 2/text/cli.htm,
May 2014.

[67] Robert J. Geller, Earthquake prediction: a critical review, Geophysical Journal International,
131, 3, pp. 425-450, 1997.

[68] R. Console, Testing earthquake forecast hypotheses, Tectonophysics, 338, 34, pp. 261268,
2001.

[69] Yan Y. Kagan, Are earthquakes predictable?, Geophysical Journal International, 131, 3, pp.
505-525, 1997.

[70] International Commission on Earthquake Forecasting for Civil Protection, Operational
Earthquake Forecasting: State of Knowledge and Guidelines for Utilization Annals of Geo-
physics, 54, 4, pp. 315-391, 2011.

[71] Lynn R. Sykes, Bruce E. Shaw, Christopher H. Scholz, Rethinking Earthquake Prediction
Pure and Applied Geophysics 155, pp. 207-232, 1999.

[72] Geophysicist predicts new bursting financial bubbles, http://ing.dk/artikel/geofysiker-
forudser-nye-bristende-finansbobler-167320 (Danish), May 2014.

146

Bibliography Bibliography

[73] Didier Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems,
Princeton University Press, 2004.

[74] A. Johansen, D. Sornette, O. Ledoit, Predicting Financial Crashes Using Discrete Scale
Invariance, Journal of Risk, 1, 4, pp. 5-32, 1999.

[75] A. Johansen, Characterization of large price variations in financial markets, Proceedings of
International Econophysics Conference, 2002.

[76] W. Zhou, D. Sornette, A case study of speculative financial bubbles in the South African
stock market 2003-2006, Physica A, 388, 6, pp. 869-880, 2009.

[77] D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quan-
titative Finance, 1, 4, pp. 452-471, 2001.

[78] Z. Jiang et al. Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese
stock market bubbles, Journal of Economic Behavior & Organization, 74, 3, pp. 149-162, 2010.

[79] J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos, John Wiley & Sons,
2nd edition, 2002.

[80] E. Ott, Chaos in Dynamical Systems, 2nd edition, Cambridge University Press, 2002.

[81] Y. Ueda, The Road to Chaos, Aerial Press, 1992.

[82] Y. Ueda, Randomly transitional phenomena in the system governed by Duffing’s equation,
Journal of Statistical Physics, 20, pp. 181-196, 1979.

[83] P. Holmes, A nonlinear oscillator with a strange attractor, Philosophical Transactions of the
Royal Society A, 292, pp. 419-448, 1979.

[84] A Wave Theory, http://www.financialwisdomforum.org/gummy-stuff/Wave-Theory-2.htm
Financial Wisdom Forum, May 2014.

[85] Martingale, http://mathworld.wolfram.com/Martingale.html, Wolfram Mathworld, May
2014.

[86] Yahoo! Finance, http://finance.yahoo.com/, Yahoo!, May 2014.

[87] Historical Stock Data Downloader MATLAB program,
http://www.mathworks.com/matlabcentral/fileexchange/18458-historical-stock-data-
downloader, May 2014.

[88] Joseph de la Vega, Confusin de Confusiones, 1688.

[89] Steve Nison, Japanese Candlestick Charting Techniques, 1991.

[90] R. W. Schabacker, Stock Market Theory and Practice, 1930.

[91] R. W. Schabacker, Technical Analysis and Stock Market Profits: A Course in Forecasting,
1932.

[92] A. J. Frost, R. R. Prechter Jr., Elliot Wave Principle, 2005.

[93] Steven Achelis, Technical Analysis from A to Z, McGraw-Hill, 2nd edition, 2000.

147

Bibliography Bibliography

[94] Harry V. Roberts, Stock-Market Patterns and Financial Analysis: Methodological Sugges-
tions, The Journal of Finance, 14, 1, pp. 1-10, 1959.

[95] J. Stuart Hunter, The Exponentially Weighted Moving Average, Journal of Quality Technol-
ogy, 18, 4, pp. 203-210, 1986.

[96] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,
May 2013.

[97] J. Welles Wilder, New Concepts in Technical Trading Systems, 1978.

[98] G. Quong, A. Soudack, Volume-weighted RSI: Money Flow, Stocks and Commodities, 7, 3,
pp. 76-77.

[99] List of Technical Analysis Trading Indicators, http://www.asiapacfinance.com/trading-
strategies/technicalindicators, May 2013.

[100] Technical Indicators and Overlays, http://stockcharts.com/school/doku.php?id=chart school:technical indicators,
May 2013.

[101] John J. Murphy, Technical Analysis of the Financial Markets, New York Institute of Fi-
nance, 1999.

148

Appendix A

Technical Indicators

This appendix introduces a wide array of indicators used for technical analysis of financial assets.
A technical indicator is merely a time series of data points derived by applying a particular
formula to one or more types of data1 for a given asset. We describe the usage and calculation,
in terms of both words and formulae, of a variety of indicators. Moreover, we discuss their
interpretations and how they can be used to e.g. find trends in stock prices, and/or determine
peaks and bottoms, etc. An incredibly vast amount of technical indicators exist, varying in both
complexity and applicability. In general, they can be divided into the following classes.

Trend Indicators reflect the tendency in price movements; the price is either moving up, down,
or sideways. The indicators belonging to this class help define prevailing directions, or
trends, in the stock price, often by smoothing data over a certain period of time.

Momentum Indicators measure the velocity and magnitude of directional price movements2,
thereby showing the strength or weakness of a trend as it progresses over a given period of
time.

Volatility Indicators show the size and magnitude of price fluctuations, providing an insight
into the level of market activity.

Volume Indicators are used to gauge the interest of investors in the asset, by including in
some way the amount of assets traded over some time period.

Cycle Indicators are used in the analysis of potentially repeating patterns (cycles), which are
dedicated to certain market or company events such as seasons (e.g. Christmas sales for
retail stores, etc.).

Other Indicators is a class comprising about a dozen indicators which do not fit anywhere
else.

It is beyond the scope of this study to give an exhaustive discussion of each and every technical
indicator.3 In fact, using too many indicators easily leads to confusion, potentially contrasting
signals and forecasts, and in turn suboptimal prediction model performance. Also, in regards to

1These data types include any combination of the opening, high, low, or closing price over a period of time,
as well as the trading volume.

2Evidently, as the name suggests, momentum indicators can be viewed as the financial pendant to momentum
in physics—i.e. velocity times mass: ~p = m~v.

3For an almost complete list, we refer to e.g. [93] or [99].

149

A.1. Simple Moving Average Appendix A. Technical Indicators

using technical indicators for machine learning methods, the use of too many indicators might
result in too many inputs, making the models prone to overfitting, which in turn leads to bad
performances on unseen data.4 Therefore, we have chosen a subset—in which the above classes of
technical indicators are well represented—deemed to be sufficiently representative and applicable
for this analysis. The particular selection of indicators is inspired by the review of domain experts
and prior research in input feature discretization [8] and stock market prediction [25], [27].

The following subsections give a description and formalization of some selected indicators as
well as a discussion of their interpretations and use for forecasting. For additional indicators, we
refer to e.g. [93].

A.1 Simple Moving Average

Moving averages are a type of “smoothing” method for reducing, or canceling, the random
variation inherent in data taken over time. When applied properly, this technique reveals more
clearly the underlying trend, seasonal, and cyclic components in the data.

In financial applications an n-period simple moving average (SMA) is the unweighted mean
of the previous n data points. Letting the time series be denoted by {yt}, the formula is

SMAt,n =
yt−(n−1) + · · ·+ yt−1 + yt

n
=

1

n

n−1∑
i=0

yt−i (A.1)

As an example, the 3-period simple moving average is

SMAt,3 =
yt−2 + yt−1 + yt

3
(A.2)

The moving average is itself a time series, and when calculating successive values of it, a new
data point enters the sum while an old one drops out. Consequently, a full summation for each
element is unnecessary, and the simple moving average can be obtained recursively by

SMAt,n = SMAt−1,n −
yt−n
n

+
yt
n

(A.3)

It is important to note that the simple moving average at time t is calculated using only
past data. For some applications it is advantageous to avoid this shift by computing the central
moving average (CMA):

CMAt,n =
yt−n−1

2
+ yt−n−1

2 +1 + · · ·+ yt + · · ·+ yt+n−1
2 −1

+ yt+n−1
2

n
=

1

n

n−1
2∑

i=−n−1
2

yt−i, (A.4)

where n is uneven.5 Compared to the 3-period SMA in Eq. (A.2) above, the 3-period CMA is

CMAt,3 =
yt−1 + yt + yt+1

3
(A.5)

Now, the central moving average for the present time cannot be computed, as it evidently
requires data points in the future. However, the CMA can be interesting when analyzing past
data.

4An explanation of this concept is given in Chapter 5, where we give a detailed description and discussion of
selected machine learning methods and their specific and general merits and drawbacks.

5Even n can be included by “smoothing the smoothed values,” as shown in e.g. [93].

150

A.2. Weighted Moving Average Appendix A. Technical Indicators

A.2 Weighted Moving Average

One of the shortcomings of the simple moving average above is that it lends equal weight to all
data points. This might not be preferable in real applications, seeing that past data points are
often deemed to gradually lose their influence. Consequently, data points further in the past
should be ascribed smaller and smaller weights. This can be achieved by using the weighted
moving average (WMA) defined by

WMAt,n =

n∑
i=1

wiyt−i+1

n∑
i=1

wi

(A.6)

The weighting scheme is such that the weights decrease by one for each previous data point,
resulting in the formula

WMAt,n =
nyt + (n− 1)yt−1 + · · ·+ (n− (n− 1))yt−n+1

n+ (n− 1) + · · ·+ (n− (n− 1))
=

n∑
i=1

(n− i+ 1)yt−i+1

n∑
i=1

(n− i+ 1)
, (A.7)

from which the weights can be read off as

wi = n− i+ 1, i = 1..n (A.8)

Evidently, this results in the older data points (with higher i) having smaller weights.

A.3 Exponential Moving Averages

Exponential smoothing schemes are very popular for producing smoothed time series. They
are much resemblant to the weighted moving average above—in fact, they are just a certain
type of the WMA—in that recent observations are given more weight than older observations.
The distinctive feature of the exponential moving average (EMA) is that it assigns exponentially
decreasing weights as the observations get older. In the following we go through three exponential
smoothing schemes of increasing complexity.

A.3.1 Single Exponential Smoothing

In single exponential smoothing the n-period EMA for the time series {yt} is calculated
recursively by6

EMA2,n = y1 (A.9)

EMAt,n = αyt−1 + (1− α)EMAt−1,n, 3 ≤ t ≤ n. (A.10)

By substituting the expressions for EMAt−1,n until the initial value EMA2,n is reached, Eq.
(A.10) can be expanded to the summation formula

EMAt,n = α

t−2∑
i=1

(1− α)i−1yt−i + (1− α)t−2S2, 2 ≤ t ≤ n. (A.11)

6This formulation follows [95]. An alternative approach [94] replaces yt−1 with yt in Eq. (A.10).

151

A.3. Exponential Moving Averages Appendix A. Technical Indicators

Here, 0 ≤ α ≤ 1 is the smoothing parameter, representing the degree of weight decrease. A
high value of α (close to 1) makes the dampening quick, i.e. discounts older observations faster,
whereas low values (close to 0) make the dampening slow.

Now, the question quickly arises of which α to use. Finding the best parameter value is often
done by means of a search method, in which one chooses the value of α that minimizes some
choice of error measure (e.g. the mean-squared error). Alternatively, α is often expressed in
terms of the choice of time periods n as α = 2

n+1 .
Moreover, t = 1 is here taken to be the first time period. Evidently, there is no EMA1,n, and

the smoothed series starts at the second time period. There is also some degree of freedom in this
initial value of the EMA. Setting EMA2,n = y1 as in Eq. (A.9) is just one method of initialization.
Another possibility is to start the EMA at a later time period and choose its initial value to be
the average of the first few observations. The prominence of the effect of the initialization on the
resultant EMA depends on α; as higher values of α discount older observations faster, and vice
versa, the choice of the initial EMA value becomes relatively more important for small α than
for large α.

Forecasting with this exponential smoothing scheme is done via the formula

EMAt+1,n = αyt + (1− α)EMAt,n, (A.12)

which can be written as
EMAt+1,n = EMAt,n + αEt, (A.13)

where Et = yt − EMAt,n is the forecast error, i.e. the difference between the actual value and
the forecast, for time period t.

Forecasting further into the future—for time periods at which the data is yet unknown—can
be done via bootstrapping. Here, one chooses the most recent data point, denoted yrecent, and
keeps it constant in the modified formula

EMAt+1,n = αyrecent + (1− α)EMAt,n (A.14)

Like the standard weighted moving average in the previous subsection, the exponential moving
average weighs recent prices more heavily than past prices. Compared to the simple, unweighted
moving average, this gives the advantage of a quicker response to fluctuations. On the other
hand, this sensitivity can also be a disadvantage and lead to false forecasting signals.7

A.3.2 Double Exponential Smoothing

As observed in e.g. [96], single smoothing does not excel in following the data when a trend is
present. This shortcoming can be reduced through the introduction of a second equation with
a second parameter, γ, which must be chosen in conjunction with α. This is called double
exponential smoothing and the two associated equations are8

EMAt,n = αyt + (1− α)(EMAt−1,n + bt−1), 0 ≤ α ≤ 1 (A.15)

bt = γ(EMAt,n − EMAt−1,n) + (1− γ)bt−1, 0 ≤ γ ≤ 1 (A.16)

The first equation works as an overall smoothing, while the latter is a kind of trend smoothing.
Again, there are a variety of ways to select initial values of EMAt,n and bt. In general, EMA1,n

is set to y1.9 Some common choices for b1 are: b1 = y2−y1, b1 = (y2−y1)+(y3−y2)+(y4−y3)
3 = y4−y1

3 ,

7In technical analysis of financial assets, these false signals are known as so-called whipsaws.
8In double exponential smoothing, the current value yt is used instead of yt−1 to calculate the smoothed series.
9The EMA series starts at t = 1 for double smoothing.

152

A.3. Exponential Moving Averages Appendix A. Technical Indicators

or in general b1 = yn−y1
n−1 . As for α and γ, these parameters can again be obtained via optimization

techniques.
For double exponential smoothing, the forecast Ft+m for m time periods ahead is given by

Ft+m = EMAt,n +mbt (A.17)

Double exponential smoothing fixes the shortcoming of single exponential smoothing when
trends are present in the data. However, if the data show both trend and so-called seasonality,
or periodicity, then double smoothing has its own shortcomings.

A.3.3 Triple Exponential Smoothing

Reducing the lacks of double exponential smoothing in the case of trend and seasonality can
be achieved by introducing a third equation—and a third parameter. We are now dealing with
triple exponential smoothing. The resulting set of equations used to obtain the smoothed
series is also known as the Holt-Winters method:

EMAt,n = α
yt
It−L

+ (1− α)(EMAt−1,n + bt−1), 0 ≤ α ≤ 1 (A.18)

bt = γ(EMAt,n − EMAt−1,n) + (1− γ)bt−1, 0 ≤ γ ≤ 1 (A.19)

It = β
yt

EMAt,n
+ (1− β)It−L, 0 ≤ β ≤ 1 (A.20)

The first and second equations are again the overall and trend smoothing, respectively, while
the third equation governs the seasonal smoothing.

The forecasting formula for m time periods ahead is in this case given by

Ft+m = (EMAt,n +mbt)It−L+m (A.21)

Initializing the Holt-Winters method requires at least one complete season, or cycle, of data
to determine the initial estimates of the seasonal indices It−L. Here, L denotes the number
of periods comprising a complete season. Commonly, one uses two complete seasons, i.e. 2L
periods.

The general formula for the initialization b of the trend series bt is

b =
1

L

(
yL+1 − y1

L
+
yL+2 − y2

L
+ · · ·+ yL+L − yL

L

)
(A.22)

Setting the initial estimates for the seasonal indices Ii for i = 1, . . . L is somewhat more
involved. Letting N be the number of complete cycles in the data, then

Ii =
1

N

N∑
j=1

yL(j−1)+i

Aj
, i = 1, . . . L, (A.23)

where

Aj =

L∑
i=1

yL(j−1)+i

L
, j = 1, . . . N. (A.24)

Evidently, Aj is the average value of y in the jth cycle of the data.

153

A.4. Moving Average Convergence Divergence Appendix A. Technical Indicators

A.4 Moving Average Convergence Divergence

As the name suggests, the Moving Average Convergence Divergence (MACD) indicator is closely
connected to the moving average described above. The MACD is the difference between two
exponential moving averages of the stock price; a “fast”, or short-period (i.e. low n) EMA and
a “slow”, or long-period (large n) EMA. Letting pt denote the stock price, the MACD (a time
series itself) is given by the simple formula

MACDt = EMAt,n1(pt)− EMAt,n2(pt), n1 < n2. (A.25)

The time series computed from this expression is also called the “MACD line”. To help facil-
itate interpretations and establish trading signals, an exponential moving average of the MACD
is also used, this being called the “signal line” and given by: MACDsignal

t = EMAt,n(MACDt).
Furthermore, a bar chart of the difference between the MACD line and the signal line is also

sometimes included.
Since moving averages are used to calculate the MACD, the freedom of choice related to the

smoothing period n carries over to the case of the MACD indicator. Evidently, there are three
smoothing periods to choose in this case; n1 and n2 in the computation of the MACD line, and a
third n for the signal line. Most often, one uses data quoted on a daily basis and sets n1 = 12days
and n2 = 26days. As for the moving average of the MACD itself, i.e. the signal line, the most
common value to use is n = 9days. In order to easily distinguish between MACDs using different
smoothing periods, one can use the notation MACD(n1, n2, n).

Through its definition as the difference between exponential moving averages of different
length, the MACD line gauges changes in the trend of a stock. Then, comparing differences
between this line (the MACD line) to an average (the signal line), one can identify subtle shifts
in the strength and direction of an asset’s trend.

As for interpretations, the MACD can generate several trading signals.10 First, a crossing of
the MACD line through zero (i.e. when the two EMAs in (A.25) are equal) provides evidence of a
change in the direction of a trend; an upward move from negative to positive MACD is considered
a so-called “bullish” signal (indicating increasing stock prices), while a downward move from
positive to negative values is a “bearish” signal (indicating decreasing prices). Evidently, this
signal only includes the MACD line. Another cue, which includes also the signal line, occurs when
the MACD line crosses the signal line; if it does in an upwards (downwards) fashion, i.e. with
a positive (negative) slope, then a buy (sell) signal is generated. Respectively, these crossovers
indicate that the trend in a stock is about to accelerate in the direction of the crossover.

Finally, like any forecasting algorithm, the MACD can generate false signals. For example,
it could be that the MACD line crossed up through the signal line—which would generate a buy
signal—but the stock price suddenly declined. A prudent strategy to filter out such false signals
would be to only buy the stock if the MACD line crosses above the signal line and remains
above it for a certain period of time. This reduces the probability of false signals, but does not
eliminate them. Consequently, it also decreases the potential profit.

A.5 Rate of Change

The Rate of Change (ROC) is a momentum oscillator that measures the percent change in a
security’s price over a given number of time periods, as represented by the formula:

ROCt =
pt − pt−n
pt−n

∗ 100 (A.26)

10Here, the trading signals are described in words; however, they can be implemented and coded in a computer
program, as is also done in this study.

154

A.6. Momentum Appendix A. Technical Indicators

Evidently, the ROC value at time t is just how much the price has changed in percent since
n periods ago. A common value is n = 14, but this should be modified to suit one’s preferences
and time horizon.

A.6 Momentum

The Momentum (MOM) is a rate of change indicator designed to identify the speed or strength
of a price movement. The current value is just the difference between current price and the price
n periods ago:

MOMt = pt − pt−n (A.27)

Values above (below) zero clearly indicate that the price has upwards (downwards) momen-
tum. The most common choice for the number of periods is n = 12.

A.7 Williams’ %R

William’s %R is a momentum indicator used to measure overbought/oversold levels. It oscillates
in the interval [−100, 0], as evident by the formula:

WRt,n = −100 ∗
max

{
phighi

}t
t−n+1

− pt

max
{
phighi

}t
t−n+1

−min
{
plowi

}t
t−n+1

(A.28)

Some explanation might be needed to understand this formula. Firstly, as with many other

indicators, one should choose the number of periods, n, to consider. Then, max
{
phighi

}t
t−n+1

denotes the maximum value of the high price—or the so-called “highest high”—over the past n

periods. Similarly, min
{
plowi

}t
t−n+1

is the “lowest low” over the last n periods. As usual, pt is
simply the closing price for trading period t.

Regarding interpretation, readings of Williams’ %R in the approximate range of −80% to
−100% indicate that the security is oversold, while readings around 0% to −20% suggest that it
is overbought.

A.8 Accumulation/Distribution Oscillator

The Accumulation/Distribution Oscillator (ADO) uses a variation of the Relative Strength Index
(section A.9) to define an asset’s buying and selling power. The ADO measures the implied
direction of each period’s trading and is given by

ADOt =

(
phight − popent

)
+
(
pcloset − plowt

)
2 ∗
(
phight − plowt

) ∗ 100, (A.29)

where the superscripts refer the highest, lowest, opening, and closing prices for the particular
time period t.

A maximum value of 100 is reached when the asset opens at the price that will turn out to
be the lowest and closes at the price that will turn out to be the highest. The minimum value
of 0 is reached if the converse is true. An upward or downward turn in the ADO, from one time
period to the next, can indicate a change in trend before the trend change happens.

155

A.9. Relative Strength Index Appendix A. Technical Indicators

When working with the Accumulation/Distribution Oscillator, one also considers the signal
line, which is a moving average of the ADO. This smooths out the ADO’s sometimes noisy
appearance to better determine when the security, on average, is overbought and oversold, and
thus when a trend change is more likely to occur.

A.9 Relative Strength Index

The Relative Strength Index (RSI) is a momentum indicator, measuring the velocity and mag-
nitude of directional price movements, that is used to track the current and historical strength
or weakness of a stock or market based on the closing prices of a recent trading period.

The calculation of the RSI proceeds as follows. First, for each trading period, an upward
change U or downward change D is calculated from the closing prices pt and pt−1 according to11

U = max (pt − pt−1, 0) =

{
pt − pt−1, if pt ≥ pt−1,
0, otherwise,

(A.30)

and

D = max (pt−1 − pt, 0) =

{
pt−1 − pt, if pt−1 ≥ pt,
0, otherwise.

(A.31)

The average U and D are then calculated using an n-period exponential moving average,
which was explained in Section A.3 above. The ratio of these averages is the relative strength
factor :12

RS =
EMAn(U)

EMAn(D)
(A.32)

This relative strength factor is then converted to a relative strength index that oscillates
between 0 and 100:

RSI = 100− 100

1 +RS
(A.33)

Now, inherent in moving averages and smoothing methods is a degree of freedom in the
choice of smoothing period n. As the RSI utilizes the exponential moving average, this freedom
of choice carries over to the case at hand. The most common smoothing period to use for the
RSI is n = 14, which is also the value recommended by its developer, J. Welles Wilder, [97].

There are several interpretations related to the RSI. First, the index is used as an indicator of
tops and bottoms of stock prices. This interpretation is linked to the principle of overbought and
oversold conditions; when a stock price moves up (down) very rapidly, the asset is at some point
considered overbought (oversold). When this overbought or oversold level is reached, a reaction
or reversal is deemed to be imminent. The corresponding RSI values are very commonly 70 and
30. Thus, RSI readings greater than 70 are interpreted as the stock being overbought, whereas
RSI values lower than 30 indicate that the stock is oversold. The range between 30 and 70 is
considered a “neutral” zone, with and RSI of 50 being a sign of no trend at all. The overbought
and oversold interpretation leads to the following trading signals; a buy signal occurs when the
RSI crosses above the 30 level (i.e. with a positive slope), while a sell signal occurs when the
RSI crosses below the 70 (i.e. with a negative slope).13

11Note that the downward change D is also positive with this notation.
12In the diverging case of EMA(U)n = 0, RS is defined as 100.
13For other—sometimes more exotic and advanced—interpretations of the RSI, we refer to e.g. [97] or the

numerous resources on technical analysis available on the Internet.

156

A.10. Money Flow Index Appendix A. Technical Indicators

A.10 Money Flow Index

Like the MACD and RSI, The Money Flow Index (MFI) is an oscillator, meaning that its value
fluctuates between a lower and upper bound—here 0 and 100, respectively. Known also as the
volume-weighted RSI, the MFI uses both the stock price and the volume to measure buying and
selling pressure.

The calculation of the MFI starts off with the money flow

MFt =
phight + plowt + pt

3
Vt, (A.34)

where Vt denotes the volume, i.e. the number of assets traded, for the given time period. phight ,
plowt , and pt are the highest, lowest, and closing price, respectively, for the particular time period.

The fraction
phigh
t +plowt +pt

3 is called the typical price.
A distinction must be made between positive and negative money flow. When the typical

price rises (declines) from one period to the next, money flow is said to be positive (negative).

Letting p̃t =
phigh
t +plowt +pt

3 be the typical price, the positive and negative money flow are defined,
respectively, by

MF+
t =

{
p̃tVt, p̃t > p̃t−1,

0, p̃t ≤ p̃t−1,
(A.35)

and

MF−t =

{
0, p̃t ≥ p̃t−1,
−p̃tVt, p̃t < p̃t−1.

(A.36)

Next, one must consider the money flow ratio. This is the ratio between the sum of positive
money flow to the sum of negative money flow, with the sums taken over a given number of time
periods n. The n-period money flow ratio is thus given by

MRt,n =

n∑
i=1

MF+
t−i+1

n∑
i=1

MF−t−i+1

(A.37)

Evidently, to compute the money flow ratio, one simply adds up all the positive money flows
for the n periods and divides them by the sum of negative money flows.

Creating an oscillator ranging from 0 to 100 is then done in the final formula for the n-period
money flow index:

MFIt,n = 100− 100

1 + MRt,n
(A.38)

Again, the choice presents itself of the number of recent time periods n to use. In technical
analysis it is very common to use data quoted on a daily basis and set n = 14 days, which is also
the value recommended by the creators of the MFI [98].

In regards to the interpretation of the MFI, values greater than 80 are generally considered
as an indication that the stock is overbought—indicating a possible imminent decline and thus
inducing a sell signal—while a value of 20 is taken to be an indication that the stock is oversold
and that an increase in price is likely to follow, thus providing a buy signal. To reduce the
risk of false signals, these MFI values should be instead regarded as caution levels, and for truly
overbought and oversold levels one should instead use 90 and 10, respectively. This interpretation

157

A.11. Commodity Channel Index Appendix A. Technical Indicators

and the corresponding trading signals can rather easily be implemented in a computer program,
as is done in this thesis.

As with many other technical indicators, an interesting case also occurs when the stock price
makes a new rally high but the MFI is less than its previous level. The interpretation of this
divergence scenario is a weak advance of the stock price—one that is likely to reverse—thereby
indicating a possible imminent decline. Of course, the opposite case also exists; if the stock price
is decreasing, continuously reaching new, lower levels, all the while the MFI increases, then a
signal is generated of the stock’s downward trend about to reverse.

A.11 Commodity Channel Index

The Commodity Channel Index (CCI) is an oscillator that measures the variation of a security’s
price from its statistical mean. It is calculated as

CCIt =
1

0.015

p̃t − SMAt,n(p̃t)

σt
. (A.39)

Here, p̃t =
phigh
t +plowt +pt

3 is the typical price at time t, SMAt,n(p̃t) is the n-period simple

moving average of the typical price, and σt = 1
n

n∑
i=1

|p̃t−i+1 − SMAt,n(p̃t)| is the mean absolute

deviation.
The constant 0.015 ensures that approximately 70 to 80 percent of all CCI values fall in the

interval [−100, 100]. The actual percentage of CCI values in this interval depends on the number
of periods n. A shorter CCI, with low n, will be more volatile and have a smaller percentage of
values within [−100, 100], whereas larger n will result in a higher percentage of CCI values in the
interval. n = 20 is a common default value for the CCI [101], but it can and should be adjusted
to fit the time horizon under consideration.

The Commodity Channel Index can be interpreted in many different ways. One of them is
to use the CCI to determine overbought and oversold levels. In this regard, values above 100
imply an overbought condition while values below −100 imply an oversold condition, each case
indicating a possible price correction to more representative levels. Another interpretation of the
CCI is as an indicator of trend signals. In this case, when the CCI rises above 100, the security
is considered to be entering a strong up-trend and a buy signal is created. If one acts on this
signal and buys the asset, then the position should be closed when the CCI falls back below 100.
Similarly, when the CCI decreases below −100, the security is considered to be in a down-trend
and a sell signal is generated. This signal ends when the CCI moves back above −100. A point of
criticism to this interpretation is that the CCI often misses the early part of the price movement,
resulting in smaller, potential profits for the investor. To overcome this, another interpretation
is that a potential buy (sell) signal is generated when the CCI crosses zero from below (above).
Finally, one can also integrate the interpretations and look for divergences. For instance, if the
price is reaching new highs but the CCI is not, then the security is potentially oversold. On the
other hand, if the price and the CCI are reaching new highs, then an up-trend is likely to follow.

A.12 Bollinger Bands

Bollinger Bands are a volatility indicator and is one of the most popular technical analysis
techniques. The financial notion of volatility corresponds to the well-known statistical property
of variance—or its square root, the standard deviation. Thus, Bollinger Bands show the spread
of prices, thus giving an indication of how volatile the market or stock is.

158

A.13. Chaikin Oscillator Appendix A. Technical Indicators

Bollinger Bands consist of:

• an n-period moving average,

• an upper band located k standard deviations above the moving average,

• and a lower band k standard deviations below the moving average.

Letting B+ and B− denote the upper and lower band, respectively, these two bands can be
formalized as

B± = MAt,n ± kσ, (A.40)

where σ is the standard deviation

σ =

√√√√ 1

n

n∑
i=1

(pt−i+1 −MAt,n)
2

(A.41)

Located between these two bands is the remaining, middle band, which is merely the moving
average MAt,n itself.

Evidently, there are again some parameters to choose. Since the Bollinger Bands make use
of moving averages, the number of periods, n, to look back should be chosen. In this regard, the
type of moving average should also be decided. And finally there is the number, k, of standard
deviations. Most often, practitioners use a simple moving average with n = 20. However,
exponential moving averages are a very common second choice. Finally, the number of standard
deviations is typically chosen to be k = 2.

Now, when the market, or stock, becomes more volatile—i.e. when prices fluctuate more
intensively—the bands widen, moving further away from the average. Conversely, during less
volatile periods, the bands contract towards the average.

The standard interpretation is that Bollinger Bands do not give absolute buy and sell signals,
but rather indicate whether the price is relatively high or low, thus allowing for more informed
confirmation with other technical indicators. In any case, some characteristics of the Bollinger
Bands are that sharp price changes tend to occur after the bands contract (corresponding to low
volatility), and that prices moving outside the bands imply a continuation of the current trend.
Moreover, tops and bottoms outside the bands followed by tops and bottoms made inside the
bands call for reversals in the trend. Finally, a move originating at one band tends to go all the
way to the other band.14

A.13 Chaikin Oscillator

The Chaikin Oscillator (CHOSC) measures the momentum of the Accumulation Distribution line
(see Sec. A.8) using the MACD formula (Sec. A.4), making it an “indicator of an indicator”. It
is the difference between the 3-day EMA of the Accumulation Distribution line and the 10-day
EMA of the Accumulation Distribution line:

CHOSCt = EMAt,3(ADt)− EMAt,10(ADt), (A.42)

where ADt is the Accumulation Distribution line (see Section A.8 above).

14There are numerous other advanced interpretations of the information given by Bollinger Bands, many of
which include e.g. certain shapes and patterns made by the stock price (see e.g. [100]). Such interpretations can
be difficult to properly implement in a computer program, however, and we therefore stick to the more manageable
cases.

159

A.14. Chaikin Volatility Appendix A. Technical Indicators

A.14 Chaikin Volatility

The Chaikin Volatility indicator compares the spread between a stock’s high and low prices. It
quantifies volatility as a widening of the range between the high and low.

The indicator is computed by first calculating an m-period exponential moving average (m =
10 by default) of the difference between the high and low prices:

H̄Lt = EMAt,m(pHt − pLt), (A.43)

where pHt and pLt denote the high and low price, and H̄Lt is the m-period EMA of the difference
between these two prices. Th Chaikin Volatility is then found by calculating how much the
moving average has changed (in percent) over a specified time of n periods (n = 10 by default):

CHVOLt =
H̄Lt − H̄Lt−n

H̄Lt−n
∗ 100. (A.44)

For additional indicators and their interpretations we refer to e.g. [93] or [99].

160

Appendix B

MATLAB Programs

As part of this thesis we have developed a number of different MATLAB programs. Some of
them are the general functions for predicting a given stock using a particular method. The rest
of the programs are our analyses and experiments. Although we have mainly considered the
NASDAQ Index and a few other assets in this study, we have coded the programs in a general
manner allowing one to perform analyses and predictions for almost any asset.

In total, the programs comprise tens of thousands of lines of code, and are thus much too
long to show here in their entirety. We have uploaded them to

https://www.dropbox.com/sh/3gbgf385bdqfjbv/AACkOWPFvmjjXwWOgVID1FZpa 1

where we will keep them available. Below, we list and describe each program file.

hist stock data.m : Function for retrieving historical stock data for one or more ticker symbols
(assets) over a given time period. The data are downloaded from Yahoo! Finance [86].2

NN.m : Function for training and testing an Artificial Neural Network model. It takes as
input a structure of stock data (as given by the hist stock data.m function), a matrix of
exogenous inputs, the number of lags to use for prediction, the number of hidden neurons, a
string defining the training function, the number of folds in cross-validation, the number of
networks to train (the one with lowest MSE is chosen), and a structure with miscellaneous
settings (show/hide plots, etc.). Its outputs include quantitative performance measures,
plots of the predictions, and more.

SVM.m : Function for training and testing a Support Vector Machine model. The general
structure, flow, and outputs are exactly the same as for the NN.m function above, so as to
make the use and comparison of our programs and their results as easy as possible. Most
of the inputs are also the same; the SVM-specific inputs include scalars specifying the type
of SVM and the kernel function, and a structure with model parameters.

RF.m : Function for training and testing a Random Forest model. Again, the inputs, outputs,
and general flow is the same as the other programs for the prediction methods. The RF-
specific inputs include the number of trees to grow and the leaf size.

1Alternative links: https://dl.dropboxusercontent.com/u/77296171/MSc%20Thesis%20-%20Christian%

20Okkels/matlab-programs-msc-thesis-christian-okkels.rar and https://dl.dropboxusercontent.com/u/

77296171/MSc%20Thesis%20-%20Christian%20Okkels/results-msc-thesis-christian-okkels.rar.
2We have modified the original version (see [87]) to suit our needs.

161

https://www.dropbox.com/sh/3gbgf385bdqfjbv/AACkOWPFvmjjXwWOgVID1FZpa
https://dl.dropboxusercontent.com/u/77296171/MSc%20Thesis%20-%20Christian%20Okkels/matlab-programs-msc-thesis-christian-okkels.rar
https://dl.dropboxusercontent.com/u/77296171/MSc%20Thesis%20-%20Christian%20Okkels/matlab-programs-msc-thesis-christian-okkels.rar
https://dl.dropboxusercontent.com/u/77296171/MSc%20Thesis%20-%20Christian%20Okkels/results-msc-thesis-christian-okkels.rar
https://dl.dropboxusercontent.com/u/77296171/MSc%20Thesis%20-%20Christian%20Okkels/results-msc-thesis-christian-okkels.rar

Appendix B. MATLAB Programs

ARMAGARCH.m : Function for training and testing an ARIMA(p,d,q)-GARCH(u,v) model.
The inputs, outputs, and flow are again the same as for the NN.m, SVM.m, RF.m programs
above. The unique inputs in this case are the specific model parameters, the type of
conditional variance model, and the innovation distribution.

exogenousInputs.m : Function for computing a variety of technical indicators to use as exoge-
nous inputs in the prediction models. The input is a structure of stock data (as provided
by hist stock data.m).

main.m : Program that calculates statistical properties, performs exploratory data analysis, and
computes technical indicators for a user-specified asset and time period. The program also
performs a thorough time series analysis, including a quantitative and qualitative analysis
of autocorrelation and conditional heteroscedasticity as well as tests for randomness and
stationarity. It also includes the construction, diagnosis, and comparison of conditional
mean and variance (ARMA-GARCH) models as seen in Section 6.1.4 for the NASDAQ
Index; but the program allows for such an analysis for any user-specified asset.

main nn.m : Program containing the ANN-specific analyses and experiments presented in 6.1.5
for the NASDAQ Index. Again, the user can specify any asset on which to perform the
analyses and predictions.

main svm.m : Program for performing SVM-specific analyses and experiments, as shown in
6.1.6 and 6.1.7.

main rf.m : Program for performing RF-specific analyses and experiments, as shown in 6.1.8.

main experiments.m : Program containing our numerous experiments in 6.2.

main oscil model.m : Implementation of the simple, linear version of our oscillator model, as
described in Section 3.4 and used in Experiment 10 (Section 6.2).

The programs listed above are the main and most important ones. There are, however, ad-
ditional programs we have used for smaller tasks. The vast majority of these we have written
ourselves: e.g. cutNanRows.m which cuts NaN (”Not A Number”) elements to properly prepare
and synchronize vectors and matrices of time series data; armagarchmodel.m which is similar
to ARMAGARCH.m (but less complex); neuralnetwork mse.m which is a function for quickly cal-
culating the Neural Network MSE performance on a training set and thus be used as an object
function in an optimization technique; sunspots.m which finds and plots the sunspot data (as
shown in Section 3.2); as well as XX regression.m and XX classification.m (where XX = NN,
SVM, and RF) which are similar to (but slightly less complex than) their above XX.m equivalents
and used for some of the initial analyses and experiments in the main xx.m programs (where xx
= nn, svm, and rf). All of these programs have been thoroughly commented to explain what is
going on in the different lines of code.

The basic SVM implementation used in our SVM programs is contained in the files svmtrain.mexw64
and svmpredict.mexw64 from the LIBSVM framework [33]. Similarly, the basic MATLAB imple-
mentation of Breiman’s Random Forests [35] used in some of our RF programs is found in the files
mexRF train.mexw64, mexRF predict.mexw64, regRF train.mexw64, regRF predict.mexw64,
mexClassRF train.mexw64, mexClassRF predict.mexw64, classRF train.mexw64, classRF predict.mexw64.
The basic implementation of Random Forests used in some of our other programs, and the basic
Neural Network implementation, are provided by built-in functions in MATLAB’s Statistics and
Neural Network Toolboxes [32], respectively.

162

	Introduction
	Structure of the Thesis
	Purposes of the Thesis
	Historical Overview of the Literature

	Financial Markets and Data
	Predictability of the Markets
	The Efficient Market Hypothesis
	Human Psychology vs. ``Computer'' Psychology
	Overview of Methods

	Financial Data
	Data Acquisition
	Raw Data
	Derived Data and Data Preprocessing
	Technical and Fundamental Data
	Data Transformations

	Technical and Fundamental Analysis

	Forecasting in Physics
	Weather Forecasting
	Crucial Differences

	Forecasting in Other Areas of Physics
	PDEs in Physics and Finance
	Oscillator Model for Financial Forecasting
	Extending the Model to Nonlinear Form

	Traditional Time Series Analysis
	Characteristics of Time Series
	Stationarity
	Correlation and Autocorrelation
	White Noise

	Autoregressive (AR) Models
	Order Determination for AR Models

	Moving Average (MA) Models
	ARMA Models
	Order Determination for ARMA models
	Forecasting with ARMA Models
	Three Representations for ARMA Models

	ARIMA Models
	ARMAX Models
	Conditional Heteroscedastic Models
	ARCH Models
	GARCH Models
	IGARCH Models
	EGARCH Models
	Conditional Heteroscedasticity Tests

	Machine Learning Methods
	Introduction
	Artificial Neural Networks
	Feedforward Networks
	Network Training and Learning Algorithms
	Recurrent Networks
	Strengths, Weaknesses and Problems

	Support Vector Machines
	SVM Classification
	SVM Regression
	Strengths, Weaknesses, and Problems with SVMs

	Random Forests
	Classification and Regression Trees
	Random Forests

	Application to Financial Forecasting

	Analysis
	Analysis of the NASDAQ Index
	Descriptive Statistics
	Exploratory Data Analysis
	Time Series Analysis
	ARMA-GARCH Models
	Neural Network Models
	Support Vector Regression Models
	Support Vector Classification Models
	Random Forests Models

	Experiments

	Conclusion
	Technical Indicators
	Simple Moving Average
	Weighted Moving Average
	Exponential Moving Averages
	Single Exponential Smoothing
	Double Exponential Smoothing
	Triple Exponential Smoothing

	Moving Average Convergence Divergence
	Rate of Change
	Momentum
	Williams' %R
	Accumulation/Distribution Oscillator
	Relative Strength Index
	Money Flow Index
	Commodity Channel Index
	Bollinger Bands
	Chaikin Oscillator
	Chaikin Volatility

	MATLAB Programs

