Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
drachmann.a@gmail.com

University of Copenhagen
Niels Bohr Institutet

Center for Quantum Devices
Outline

1 Motivation

2 Theory of Superconducting Proximity Effect

3 Fabrication of Devices

4 Fabrication Optimization

5 Results

6 Outlook
Progress of Measuring MF

August 8, 2014

Slide 3/38
Progress of Measuring MF

Measurements by Mourik et al indicate MF *

Progress of Measuring MF

Measurements by Mourik et al indicate MF *

Soft gap \rightarrow Zero bound state is not protected

Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann

NBI, QDev

Motivation

Theory of Superconducting Proximity Effect

Fabrication of Devices

Fabrication Optimization

Results

Outlook

Progress of Measuring MF

Measurements by Mourik et al indicate MF *

Soft gap → Zero bound state is not protected

Why?

Progress of Measuring MF

Measurements by Mourik et al indicate MF *

Soft gap → Zero bound state is not protected
Why? - Bad interface between superconductor and nanowire**

August 8, 2014
Slide 3/38
Progress of Measuring MF in QDev

InAs wires are grown with epitaxial Al shell*

August 8, 2014
Slide 4/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Progress of Measuring MF in QDev

InAs wires are grown with epitaxial Al shell*

August 8, 2014
Slide 4/38
Progress of Measuring MF in QDev

InAs wires are grown with epitaxial Al shell*

My project: Proximitize the Al shell with Nb

Superconducting Proximity Effect

A normal conductor in good contact with a superconductor is able to conduct supercurrent
A normal conductor in good contact with a superconductor is able to conduct supercurrent.
Superconducting Proximity Effect

A normal conductor in good contact with a superconductor is able to conduct supercurrent

Coherence length determines the range of the proximity effect
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation

Theory of Superconducting Proximity Effect

Fabrication of Devices

Fabrication Optimization

Results

Outlook

SS’ Proximity Effect

August 8, 2014
Slide 6/38
SS’ Proximity Effect

\[T_{C,S} > T_{C,S'} > T_{\text{measure}} \]
SS’ Proximity Effect

\[T_{C,S} > T_{C,S'} > T_{\text{measure}} \]
Experimental Evidence of SS’ Proximity Effect

Figure: 3D experimental and 2D theoretical graphs showing spacial SS’ proximity effect

Adapted from:
Theory of SS’ Proximity Effect

Gamma factors:
Proximity strength γ and Interface transparency γ_{BN}*

Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Theory of SS’ Proximity Effect

Gamma factors:
Proximity strength γ and Interface transparency γ_{BN}

$$\gamma = \frac{\rho_S \xi_S}{\rho_{S'} \xi_{S'}}$$

$$\gamma_{BN} = \frac{R_B}{\rho_{S'} \xi_{S'}}$$

Theory of SS’ Proximity Effect

Gamma factors:
Proximity strength γ and Interface transparency γ_{BN}*

$$\gamma = \frac{\rho S \xi S}{\rho S' \xi S'} = \frac{\xi S n S' \tau S'}{\xi S' n S \tau S}$$

$$\gamma_{BN} = \frac{R_B}{\rho S' \xi S'}$$

Theory of SS’ Proximity Effect for Thin S’
Theory of SS’ Proximity Effect for Thin S’

\[
\gamma_m = \frac{\xi_S n_{S'} \tau_{S'}}{\xi_S n_S \tau_S} \cdot \frac{d_{S'}}{\xi_{S'}} \\
\gamma_B = \frac{R_B}{\rho_{S'} \xi_{S'}} \cdot \frac{d_{S'}}{\xi_{S'}}
\]
Theory of SS’ Proximity Effect for Thin S’

\[
\gamma_m = \frac{\xi_S n_{S'} \tau_{S'}}{\xi_{S'} n_S \tau_S} \cdot \frac{d_{S'}}{\xi_{S'}} \\
\gamma_B = \frac{R_B}{\rho_S' \xi_{S'}} \cdot \frac{d_{S'}}{\xi_{S'}}
\]

Figure: Spacial orderparameter for different gamma factors
Theory Sum Up

- Low interface resistance → Andreev Reflections → Proximity effect
- $d < \xi$ → global pair potential
- $d_{S'}$ and R_{B} should be as little as possible

August 8, 2014
Slide 10/38
Theory Sum Up

- Low interface resistance \rightarrow Andreev Reflections
 \rightarrow Proximity effect
Theory Sum Up

- Low interface resistance \rightarrow Andreev Reflections
 \rightarrow Proximity effect

- $d < \xi$ \rightarrow global pair potential
Theory Sum Up

- Low interface resistance \rightarrow Andreev Reflections \rightarrow Proximity effect

- $d < \xi$ \rightarrow global pair potential

- d_S, and R_B should be as little as possible
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting
Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Idea for device

August 8, 2014
Slide 11/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Device Dimensions

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

August 8, 2014
Slide 12/38
Fabrication Overview

Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

August 8, 2014
Slide 13/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Detailed Fabrication Schedule

August 8, 2014
Slide 14/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Detailed Fabrication Schedule

August 8, 2014
Slide 15/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation

Theory of Superconducting Proximity Effect

Fabrication of Devices

Fabrication Optimization

Results

Outlook

Detailed Fabrication Schedule

August 8, 2014
Slide 16/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Problems with Nb Contacts

First generation of devices failed

Suspct milling to destroy the resist

E-6 m
New Resist Component

Another component added to resist:
New Resist Component

Another component added to resist:
Zep has a strong mechanical resistance
Use of New Resist

No shortening

Not totally controllable geometry
Bad resistance to small Nb contacts
Fabrication Optimizations

- Making milling tests for AlO$_x$ (Using 600 volts instead of 300 volts)
- Evaporating Ti/Au on etch windows
- Using (NH$_4$)$_2$S to remove InAsO$_x$ instead of milling
- Optimizing the width of the Nb contacts
- Changing CAD design
- Quicker liftoff
Milling Test for AlO$_X$

Evaporate 20 nm Al on clean chip
Preheat Kaufmann for 2 min before each milling with closed shutter
Mill for 30 sec at 600 volts - removed 2-3 nm
Mill for 45 sec at 600 volts - removed almost all the Al

Chose 35 sec at 600 volts

August 8, 2014
Evaporating Au in Etch Window
Etch for 9 sec at 55°C runs ∼ 80nm
Evaporating Contacts on Etch Windows

Have to be think about shadowing when designing contacts
Using \((\text{NH}_4)_2\text{S}\) to Etch and Passivate InAs

After etch put sample in 40°C \((\text{NH}_4)_2\text{S}\) for 20 min

Dry and put directly into AJA

Evaporate without milling

Have had a success rate of 4/5 which is rather good
Optimizing Width of Nb Contacts

Chose a width of 250 nm instead of 100 nm
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation

Theory of Superconducting Proximity Effect

Fabrication of Devices

Fabrication Optimization

Results

Outlook

August 8, 2014
Slide 26/38
Quicker Liftoff

By covering parts of chip with aluminum foil, liftoff can be done in few minutes
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

Latest devices

- One of several devices with most contacts having sufficiently low resistance
- Most thin Nb contacts still have bad resistance

August 8, 2014
Slide 28/38
Outlook

Measurements

- Measure Nb bar (Nb contacting 4 meanders)
 - if not superconducting, try sputter with lower power
- Measure devices in a dilution refrigerator

Further fab

- AJA2 now have Nb - Can rotate while milling → less uneven
- Make milling test at 300 volts with new preheat method
- Try even thicker Nb contacts
Thank you for your time
Test for Nb Contact Thickness

<table>
<thead>
<tr>
<th>Device</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to contact 1</td>
<td>24kΩ</td>
<td>GΩ</td>
<td>GΩ</td>
<td>GΩ</td>
</tr>
<tr>
<td>Resistance to contact 2</td>
<td>12kΩ</td>
<td>206MΩ</td>
<td>7.7MΩ</td>
<td>900kΩ</td>
</tr>
<tr>
<td>Resistance to contact 3</td>
<td>14kΩ</td>
<td>113kΩ</td>
<td>38kΩ</td>
<td>11kΩ</td>
</tr>
<tr>
<td>Resistance to contact 4</td>
<td>14kΩ</td>
<td>24kΩ</td>
<td>12kΩ</td>
<td>12kΩ</td>
</tr>
<tr>
<td>Resistance to contact 5</td>
<td>12kΩ</td>
<td>32kΩ</td>
<td>14kΩ</td>
<td>9kΩ</td>
</tr>
<tr>
<td>Resistance to contact 6</td>
<td>12kΩ</td>
<td>25kΩ</td>
<td>11kΩ</td>
<td>8.5kΩ</td>
</tr>
</tbody>
</table>
Conductivity vs Back Gate Voltage

a

Conductivity vs Back Gate Voltage

b

Keithley 1

Sources $V_{BG}=10\,\text{mV}$
Measures current

Keithley 2

Sweep V_{BG}
from -25V to 25V

BG

$5M\Omega$
Calibration of Nb Sputtering

\[a = \frac{\bar{x} \cdot \bar{y}}{|\bar{x}|^2} \]

\[\sigma = \sqrt{\frac{\sum_{i=1}^{N}(y_i - a \cdot x_i)^2}{N - 1}} = 5.77\text{nm} \quad 11.45\text{nm} \]
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann

NBI, QDev

Motivation

Theory of Superconducting Proximity Effect

Fabrication of Devices

Fabrication Optimization

Results

Outlook

August 8, 2014 Slide 34/38

Wire Deposition
Chip and Localization of Wires

Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

August 8, 2014
Slide 35/38
Introducing Nb to InAs nanowire with epitaxial Al full shell

Asbjørn Cennet Cliff Drachmann
NBI, QDev

Motivation
Theory of Superconducting Proximity Effect
Fabrication of Devices
Fabrication Optimization
Results
Outlook

August 8, 2014
Slide 35/38
Material Deposition

- Evaporation - Linear movement
- Sputtering - Directional diffusive
- Milling
Missing Precision

Wetetch: The whole chip is put in etchant
Missing Precision

Wetetch: The whole chip is put in etchant Material

Deposition:

Recall device dimensions ~ 100nm
Resist

PMMA: Long chains of polymers
MMA: Shorter chains of polymers
Both are soluble in acetone
Resist

PMMA: Long chains of polymers
MMA: Shorter chains of polymers
Both are soluble in acetone

E-Beam breaks the chains → soluble in MIBK
Elionix can expose precision down to 20 nm
Resist

PMMA: Long chains of polymers
MMA: Shorter chains of polymers
Both are soluble in acetone

E-Beam breaks the chains \rightarrow soluble in MIBK
Elionix can expose precision down to 20 nm