Publications by Jesper Nygård – University of Copenhagen

Forward this page to a friend Resize Print Bookmark and Share

Center for Quantum Devices > Research > Publications > Jesper Nygård

Publications by Jesper Nygård

  • 2017
    • Conduction Channels of an InAs-Al nanowire Josephson weak link - Abstract
      • We present a quantitative characterization of an electrically tunable Josephson junction defined in an InAs nanowire proximitized by an epitaxially-grown superconducting Al shell. The gate-dependence of the number of conduction channels and of the set of transmission coefficients are extracted from the highly nonlinear current-voltage characteristics. Although the transmissions evolve non-monotonically, the number of independent channels can be tuned, and configurations with a single quasi-ballistic channel achieved.
    • M. F. Goffman, C. Urbina, H. Pothier, J. Nygård, C. M. Marcus, P. Krogstrup
      DOI: 10.1088/1367-2630/aa7641
      1706.09150v1 [pdf]

    • Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry - Abstract
      • A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types -- electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling towards high-density integrated bioelectronic circuitry.
    • D. J. Carrad, A. B. Mostert, A. R. Ullah, A. M. Burke, H. J. Joyce, H. H. Tan, C. Jagadish, P. Krogstrup, J. Nygård, P. Meredith, A. P. Micolich
      Journal reference: Nano Letters 17, 827-833 (2017) [ 1705.00611v1 ]
      DOI: 10.1021/acs.nanolett.6b04075

    • Towards low-dimensional hole systems in Be-doped GaAs nanowires - Abstract
      • GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately-doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly-doped nanowires and inability to reach a clear off-state under gating for the highly-doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ~$10^{4}$, and sub-threshold slope 50 mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantization highlighting the potential for future quantum device studies in this material system.
    • A. R. Ullah, J. G. Gluschke, P. Krogstrup, C. B. Sørensen, J. Nygård, A. P. Micolich
      Journal reference: Nanotechnology 28, 134005 (2017) [ 1704.03957v1 ]
      DOI: 10.1088/1361-6528/aa6067

    • Current-phase relations of few-mode InAs nanowire Josephson junctions - Abstract
      • Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, $I$, versus the phase, $\phi$, across the junction is called the current-phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. We measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunable junction, we found that the CPR varied with gate voltage: Near the onset of supercurrent, we observed behavior consistent with resonant tunneling through a single, highly transmitting mode. The gate dependence is consistent with modeled subband structure that includes an effective tunneling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.
    • Eric M. Spanton, Mingtang Deng, Saulius Vaitiekėnas, Peter Krogstrup, Jesper Nygård, Charles M. Marcus, Kathryn A. Moler
      1701.01188v1 [pdf]

    • Majorana bound state in a coupled quantum-dot hybrid-nanowire system - Abstract
      • Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.
    • M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Science 354, 1557-1562 (2016) [ 1612.07989v2 ]
      DOI: 10.1126/science.aaf3961

  • 2016
    • Transport Signatures of Quasiparticle Poisoning in a Majorana Island - Abstract
      • We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (~ 1 {\mu}s) and sets a bound for a weakly coupled island (> 10 {\mu}s). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. In energy units, fluctuations are consistent with previous measurements.
    • S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon, K. Flensberg, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 118, 137701 (2017) [ 1612.05748v1 ]
      DOI: 10.1103/PhysRevLett.118.137701

    • InAs Nanowire with Epitaxial Aluminum as a Single-Electron Transistor with Fixed Tunnel Barriers - Abstract
      • We report on fabrication of single-electron transistors using InAs nanowires with epitaxial aluminium with fixed tunnel barriers made of aluminium oxide. The devices exhibit a hard superconducting gap induced by the proximized aluminium cover shell and they behave as metallic single-electron transistors. In contrast to the typical few channel contacts in semiconducting devices, our approach forms opaque multichannel contacts to a semiconducting wire and thus provides a complementary way to study them. In addition, we confirm that unwanted extra quantum dots can appear at the surface of the nanowire. Their presence is prevented in our devices, and also by inserting a protective layer of GaAs between the InAs and Al, the latter being suitable for standard measurement methods.
    • M. Taupin, E. Mannila, P. Krogstrup, V. F. Maisi, H. Nguyen, S. M. Albrecht, J. Nygard, C. M. Marcus, J. P. Pekola
      Journal reference: Phys. Rev. Applied 6, 054017 (2016) [ 1601.01149v4 ]
      DOI: 10.1103/PhysRevApplied.6.054017

    • Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions - Abstract
      • The superconducting proximity effect in semiconductor nanowires has recently enabled the study of novel superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates providing a highly scalable and in-situ variation of the device properties. In addition, semiconductors with large g-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as $\varphi_0$ Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra is a result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.
    • David J. van Woerkom, Alex Proutski, Bernard van Heck, Daniël Bouman, Jukka I. Väyrynen, Leonid I. Glazman, Peter Krogstrup, Jesper Nygård, Leo P. Kouwenhoven, Attila Geresdi
      1609.00333v1 [pdf]

    • Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates - Abstract
      • We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25\% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find {\it two} sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transition between singlet and a triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin-based Bell inequalities.
    • G. Fábián, P. Makk, M. H. Madsen, J. Nygård, C. Schönenberger, A. Baumgartner
      Journal reference: Phys. Rev. B 94, 195415 (2016) [ 1608.07143v1 ]
      DOI: 10.1103/PhysRevB.94.195415

    • Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot - Abstract
      • We demonstrate experimentally that non-collinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near four-fold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems is particularly interesting when combined with induced superconducting correlations as it may facilitate unconventional superconductivity and detection of Cooper pair entanglement. Our device comprises the necessary elements.
    • Morten Canth Hels, Bernd Braunecker, Kasper Grove-Rasmussen, Jesper Nygård
      Journal reference: Phys. Rev. Lett. 117, 276802 (2016) [ 1606.01065v1 ]
      DOI: 10.1103/PhysRevLett.117.276802

    • Normal, superconducting and topological regimes of hybrid double quantum dots - Abstract
      • Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot devices made from InAs nanowires with a patterned epitaxial Al two-facet shell that proximitizes two gate-defined segments along the nanowire. We follow the evolution of mesoscopic superconductivity and charging energy in this system as a function of magnetic field and voltage-tuned barriers. Inter-dot coupling is varied from strong to weak using side gates, and the ground state is varied between normal, superconducting, and topological regimes by applying a magnetic field. We identify the topological transition by tracking the spacing between successive cotunneling peaks as a function of axial magnetic field and show that the individual dots host weakly hybridized Majorana modes.
    • D. Sherman, J. S. Yodh, S. M. Albrecht, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Nature Nanotechnology 12, 212 (2017) [ 1605.01865v1 ]
      DOI: 10.1038/nnano.2016.227

    • Exponential protection of zero modes in Majorana islands - Abstract
      • Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers [1]. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, and the pinning is predicted to be exponential as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in proximitized nanowires and atomic chains, with small mode-splitting potentially explained by hybridization of Majoranas. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminum, which forms a proximity-induced superconducting Coulomb island (a Majorana island) that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometers, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half micrometer of increased wire length. For devices longer than about one micrometer, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
    • S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Nature 531, 206 (2016) [pdf]
      DOI: 10.1038/nature17162

    • Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation - Abstract
      • The thermal gradient along indium-arsenide nanowires was engineered by a combination of fabricated micro- trenches in the supporting substrate and focused laser irradiation. This allowed local control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.
    • R. Tanta, M. H. Madsen, Z. Liao, P. Krogstrup, T. Vosch, J. Nygard, T. S. Jespersen
      Journal reference: Appl. Phys. Lett. 107, 243101 (2015) [ 1601.06583v1 ]
      DOI: 10.1063/1.4937442

  • 2015
    • Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots - Abstract
      • Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to $1.3\,$GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.
    • S. d'Hollosy, M. Jung, A. Baumgartner, V. A. Guzenko, M. H. Madsen, J. Nygård, C. Schönenberger
      Journal reference: Nano Lett. 15, 4585 (2015) [pdf]
      DOI: 10.1021/acs.nanolett.5b01190

    • Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter - Abstract
      • Cooper pair splitting (CPS) is a process in which the electrons of naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three - site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.
    • G. Fülöp, F. Domínguez, S. d'Hollosy, A. Baumgartner, P. Makk, M. H. Madsen, V. A. Guzenko, J. Nygård, C. Schönenberger, A. Levy Yeyati, S. Csonka
      Journal reference: Phys. Rev. Lett. 115, 227003 (2015) [pdf]
      DOI: 10.1103/PhysRevLett.115.227003

    • Quantum transport in carbon nanotubes - Abstract
      • Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.
    • E. A. Laird, F. Kuemmeth, G. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, L. P. Kouwenhoven
      Journal reference: Rev. Mod. Phys. 87, 703 (2015) [pdf]
      DOI: 10.1103/RevModPhys.87.703

    • Semiconductor-Nanowire-Based Superconducting Qubit - Abstract
      • We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
    • T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 115, 127001 (2015) [pdf]
      DOI: 10.1103/PhysRevLett.115.127001

    • Hard gap in epitaxial semiconductor–superconductor nanowires - Abstract
      • Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
    • W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J. Nygård, C. M. Marcus
      Journal reference: Nature Nanotechnology 10, 232 (2015) [pdf]
      DOI: 10.1038/nnano.2014.306

    • Parity lifetime of bound states in a proximitized semiconductor nanowire - Abstract
      • Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
    • A. P. Higginbotham, S. M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygard, K. Flensberg, C. M. Marcus
      Journal reference: Nature Physics 11, 1017 (2015) [pdf]
      DOI: 10.1038/nphys3461

  • 2014
    • Epitaxy of semiconductor–superconductor nanowires - Abstract
      • Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
    • P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, T. S. Jespersen
      Journal reference: Nature Materials 14, 400 (2015) [pdf]
      DOI: 10.1038/nmat4176

    • Local electrical tuning of the nonlocal signals in a Cooper pair splitter - Abstract
      • A Cooper pair splitter consists of a central superconducting contact, S, from which electrons are injected into two parallel, spatially separated quantum dots (QDs). This geometry and electron interactions can lead to correlated electrical currents due to the spatial separation of spin-singlet Cooper pairs from S. We present experiments on such a device with a series of bottom gates, which allows for spatially resolved tuning of the tunnel couplings between the QDs and the electrical contacts and between the QDs. Our main findings are gate-induced transitions between positive conductance correlation in the QDs due to Cooper pair splitting and negative correlations due to QD dynamics. Using a semi-classical rate equation model we show that the experimental findings are consistent with in-situ electrical tuning of the local and nonlocal quantum transport processes. In particular, we illustrate how the competition between Cooper pair splitting and local processes can be optimized in such hybrid nanostructures.
    • G. Fülöp, S. d'Hollosy, A. Baumgartner, P. Makk, V. A. Guzenko, M. H. Madsen, J. Nygård, C. Schönenberger, S. Csonka
      Journal reference: Phys. Rev. B 90, 235412 (2014) [pdf]
      DOI: 10.1103/PhysRevB.90.235412

  • 2013
    • Epitaxial aluminum contacts to InAs nanowires - Abstract
      • We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at low temperature. Half-covering aluminum contacts are realized without the need of lithography and we demonstrate how to controllably insert high-band gap layers in the interface region. These developments are relevant to hybrid superconductor-nanowire devices that support Majorana zero energy states.
    • N. L. B. Ziino, P. Krogstrup, M. H. Madsen, E. Johnson, J. B. Wagner, C. M. Marcus, J. Nygård, T. S. Jespersen
      1309.4569v1 [pdf]

    • AIP Conference Proceedingsg-factor anisotropy in nanowire-based InAs quantum dots - Abstract
      • The determination and control of the electron $g$-factor in semiconductor quantum dots (QDs) are fundamental prerequisites in modern concepts of spintronics and spin-based quantum computation. We study the dependence of the $g$-factor on the orientation of an external magnetic field in quantum dots (QDs) formed between two metallic contacts on stacking fault free InAs nanowires. We extract the $g$-factor from the splitting of Kondo resonances and find that it varies continuously in the range between $|g^*| = 5$ and 15.
    • Samuel d'Hollosy, Gábor Fábián, Andreas Baumgartner, Jesper Nygård, Christian Schönenberger
      Journal reference: AIP Conf. Proc. 1566, 359 (2013) [ 1309.0726v1 ]
      DOI: 10.1063/1.4848434

    • Advances in the theory of III–V nanowire growth dynamics - Abstract
      • Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.
    • Peter Krogstrup, Henrik I. Jørgensen, Erik Johnson, Morten Hannibal Madsen, Claus B. Sørensen, Anna Fontcuberta i Morral, Martin Aagesen, Jesper Nygård, Frank Glas
      Journal reference: J. Phys. D: Appl. Phys. 46 (2013) 313001 [pdf]
      DOI: 10.1088/0022-3727/46/31/313001

    • A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3 - Abstract
      • The discovery of two-dimensional electron gases (2DEGs) at the heterointerface between two insulating perovskite-type oxides, such as LaAlO3 and SrTiO3, provides opportunities for a new generation of all-oxide electronic and photonic devices. However, significant improvement of the interfacial electron mobility beyond the current value of approximately 1,000 cm2V-1s-1 (at low temperatures), remains a key challenge for fundamental as well as applied research of complex oxides. Here, we present a new type of 2DEG created at the heterointerface between SrTiO3 and a spinel {\gamma}-Al2O3 epitaxial film with excellent quality and compatible oxygen ions sublattices. This spinel/perovskite oxide heterointerface exhibits electron mobilities more than one order of magnitude higher than those of perovskite/perovskite oxide interfaces, and demonstrates unambiguous two-dimensional conduction character as revealed by the observation of quantum magnetoresistance oscillations. Furthermore, we find that the spinel/perovskite 2DEG results from interface-stabilized oxygen vacancies and is confined within a layer of 0.9 nm in proximity to the heterointerface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.
    • Y. Z. Chen, N. Bovet, F. Trier, D. V. Christensen, F. M. Qu, N. H. Andersen, T. Kasama, W. Zhang, R. Giraud, J. Dufouleur, T. S. Jespersen, J. R. Sun, A. Smith, J. Nygård, L. Lu, B. Büchner, B. G. Shen, S. Linderoth, N. Pryds
      Journal reference: Nature Communications, Nat Commun. 2013;4:1371 [pdf]
      DOI: 10.1038/ncomms2394

    • Single-nanowire solar cells beyond the Shockley–Queisser limit - Abstract
      • Light management is of great importance to photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal pn-junction combined with an optimal light absorption can lead to a solar cell efficiency above the Shockley-Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate. At one sun illumination a short circuit current of 180 mA/cm^2 is obtained, which is more than one order of magnitude higher than what would be predicted from Lambert-Beer law. The enhanced light absorption is shown to be due to a light concentrating property of the standing nanowire as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III-V based nanowire solar cells under one sun illumination.
    • Peter Krogstrup, Henrik Ingerslev Jørgensen, Martin Heiss, Olivier Demichel, Jeppe V. Holm, Martin Aagesen, Jesper Nygard, Anna Fontcuberta i Morral
      Journal reference: Nature Photonics 7, 306-310 (2013) [pdf]
      DOI: 10.1038/nphoton.2013.32

  • 2012
    • Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction - Abstract
      • The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupancy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
    • W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 110, 217005 (2013) [pdf]
      DOI: 10.1103/PhysRevLett.110.217005

  • 2011
    • Finite-Bias Cooper Pair Splitting - Abstract
      • In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit non-classical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the electrical transport through the device can be tuned by electrical means to be dominated either by Cooper pair splitting (CPS), or by elastic co-tunneling (EC). The basic experimental findings can be understood by considering the energy dependent density of states in a QD. The reported experiments add bias-dependent spectroscopy to the investigative tools necessary to develop CPS-based sources of entangled electrons in solid-state devices.
    • L. Hofstetter, S. Csonka, A. Baumgartner, Fülöp, S. d'Hollosy, J. Nygård, C. Schönenberger
      Journal reference: Phys. Rev. Lett. 107, 136801 (2011) [pdf]
      DOI: 10.1103/PhysRevLett.107.136801

  • 2010
    • Ferromagnetic Proximity Effect in a Ferromagnet–Quantum-Dot–Superconductor Device - Abstract
      • Ferromagnetic proximity effect is studied in InAs nanowire (NW) based quantum dots (QD) strongly coupled to a ferromagnetic (F) and a superconducting (S) lead. The influence of the F lead is detected through the splitting of the spin-1/2 Kondo resonance. We show that the F lead induces a local exchange field on the QD, which has varying amplitude and a sign depending on the charge states. The interplay of the F and S correlations generates an exchange field related supgap feature. This novel mini-gap allows now the visualization of the exchange field also in even charge states
    • L. Hofstetter, S. Csonka, A. Geresdi, M. Aagesen, J. Nygard, C. Schonenberger
      Journal reference: Phys. Rev. Lett. 104, 246804 (2010) [pdf]
      DOI: 10.1103/PhysRevLett.104.246804

    • Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments - Abstract
      • Fullerene peapods, that is carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications. Here, we investigate the effect of C60 fullerenes on electron transport via peapod quantum dots. Compared to empty nanotubes, we find an abnormal temperature dependence of Coulomb blockade oscillations, indicating the presence of a nanoelectromechanical coupling between electronic states of the nanotube and mechanical vibrations of the fullerenes. This provides a method to detect the C60 presence and to probe the interplay between electrical and mechanical excitations in peapods, which thus emerge as a new class of nanoelectromechanical systems.
    • Pawel Utko, Raffaello Ferone, Ilya V. Krive, Robert I. Shekhter, Mats Jonson, Marc Monthioux, Laure Noé, Jesper Nygård
      Journal reference: Nat. Commun. 1, 37 (2010) [pdf]
      DOI: 10.1038/ncomms1034

    • Gate-dependent spin-orbit coupling in multi-electron carbon nanotubes - Abstract
      • Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. We demonstrate this coupling of spin and orbit in a carbon nanotube quantum dot in the general multi-electron regime in presence of finite disorder. Further, we find a strong systematic dependence of the spin-orbit coupling on the electron occupation of the quantum dot. This dependence, which even includes a sign change is not demonstrated in any other system and follows from the curvature-induced spin-orbit split Dirac-spectrum of the underlying graphene lattice. Our findings unambiguously show that the spin-orbit coupling is a general property of nanotube quantum dots which provide a unique platform for the study of spin-orbit effects and their applications.
    • Thomas Sand Jespersen, Kasper Grove-Rasmussen, Jens Paaske, Koji Muraki, Toshimasa Fujisawa, Jesper Nygård, Karsten Flensberg
      1008.1600v2 [pdf]

    • Transport via coupled states in a C60 peapod quantum dot - Abstract
      • We have measured systematic repetitions of avoided crossings in low temperature three-terminal transport through a carbon nanotube with encapsulated C60 molecules. We show that this is a general effect of the hybridization of a host quantum dot with an impurity. The well-defined nanotube allows identification of the properties of the impurity, which we suggest to be a chain of C60 molecules inside the nanotube. This electronic coupling between the two subsystems opens the interesting and potentially useful possibility of contacting the encapsulated molecules via the tube.
    • Anders Eliasen, Jens Paaske, Karsten Flensberg, Sebastian Smerat, Martin Leijnse, Maarten R. Wegewijs, Henrik I. Jørgensen, Marc Monthioux, Jesper Nygård
      DOI: 10.1103/PhysRevB.81.155431
      1002.0477v1 [pdf]

  • 2009
    • Mesoscopic conductance fluctuations in InAs nanowire-based SNS junctions - Abstract
      • We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperature even in the low-temperature regime. This dependence is attributed to high sensitivity of perfectly conducting channels to dephasing and the SNS fluctuations thus provide a sensitive probe of dephasing in a regime where normal transport fails to detect it. Further, the conductance fluctuations are strongly non-linear in bias voltage and reveal sub-gap structure. The experimental findings are qualitatively explained in terms of multiple Andreev reflections in chaotic quantum dots with imperfect contacts.
    • T. S. Jespersen, M. L. Polianski, C. B. Soerensen, K. Flensberg, J. Nygaard
      Journal reference: New J. Phys. 11, 113025 (2009) [pdf]
      DOI: 10.1088/1367-2630/11/11/113025

    • Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots - Abstract
      • We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond.
    • K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske, T. S. Jespersen, J. Nygård, K. Flensberg, P. E. Lindelof
      Journal reference: Phys. Rev. B 79, 134518 (2009) [pdf]
      DOI: 10.1103/PhysRevB.79.134518

    • Nonequilibrium cotunneling through a three-level quantum dot - Abstract
      • We calculate the nonlinear cotunneling conductance through a quantum dot with 3 electrons occupying the three highest lying energy levels. Starting from a 3-orbital Anderson model, we apply a generalized Schrieffer-Wolff transformation to derive an effective Kondo model for the system. Within this model we calculate the nonequilibrium occupation numbers and the corresponding cotunneling current to leading order in the exchange couplings. We identify the inelastic cotunneling thresholds and their splittings with applied magnetic field, and make a qualitative comparison to recent experimental data on carbon nanotube and InAs quantum-wire quantum dots. Further predictions of the model like cascade resonances and a magnetic-field dependence of the orbital level splitting are not yet observed but within reach of recent experimental work on carbon nanotube and InAs nanowire quantum dots.
    • S. Schmaus, V. Koerting, J. Paaske, T. S. Jespersen, J. Nygård, P. Wölfle
      Journal reference: Phys. Rev. B 79, 045105 (2009) [pdf]
      DOI: 10.1103/PhysRevB.79.045105

  • 2008
    • Giant fluctuations and gate control of the g-factor in InAs Nanowire Quantum Dots - Abstract
      • We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2-Kondo effect. Unlike to previous studies based on 2DEG quantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can scatter between 2 and 18. Furthermore electric gate tunability of the g-factor is demonstrated.
    • S. Csonka, L. Hofstetter, F. Freitag, S. Oberholzer, T. S. Jespersen, M. Aagesen, J. Nygard, C. Schonenberger
      DOI: 10.1021/nl802418w
      0808.1492v2 [pdf]

    • The influence of electro-mechanical effects on resonant electron tunneling through small carbon nano-peapods - Abstract
      • The influence of a fullerene molecule trapped inside a single-wall carbon nanotube on resonant electron transport at low temperatures and strong polaronic coupling is theoretically discussed. Strong peak to peak fluctuations and anomalous temperature behavior of conductance amplitudes are predicted and investigated. The influence of the chiral properties of carbon nanotubes on transport is also studied.
    • I. V. Krive, R. Ferone, R. I. Shekhter, M. Jonson, P. Utko, J. Nygård
      Journal reference: New J. Phys. 10 (2008) 043043 [ cond-mat/0702153v2 ]
      DOI: 10.1088/1367-2630/10/4/043043

  • 2007
    • Kondo-Enhanced Andreev Tunneling in InAs Nanowire Quantum Dots - Abstract
      • We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=\Delta/e$ markedly stronger(weaker) than the quasiparticle tunneling peaks at $|V_{sd}|=2\Delta/e$ for odd(even) occupation. We attribute the enhanced $\Delta$-peak to an interplay between Kondo-correlations and Andreev tunneling in dots with an odd number of spins, and substantiate this interpretation by a poor man's scaling analysis.
    • T. Sand-Jespersen, J. Paaske, B. M. Andersen, K. Grove-Rasmussen, H. I. Jørgensen, M. Aagesen, C. Sørensen, P. E. Lindelof, K. Flensberg, J. Nygård
      Journal reference: Phys. Rev. Lett. 99, 126603 (2007) [ cond-mat/0703264v1 ]
      DOI: 10.1103/PhysRevLett.99.126603

  • 2006
    • Kondo physics in tunable semiconductor nanowire quantum dots - Abstract
      • We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.
    • T. S. Jespersen, M. Aagesen, C. Soerensen, P. E. Lindelof, J. Nygaard
      DOI: 10.1103/PhysRevB.74.233304
      cond-mat/0608478v1 [pdf]

    • Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes - Abstract
      • The Kondo-effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons and at low temperature this leads to a zero-bias conductance anomaly. This has become a common signature in bias-spectroscopy of single-electron transistors, observed in GaAs quantum dots as well as in various single-molecule transistors. While the zero-bias Kondo effect is well established it remains uncertain to what extent Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence. Here we report on a pronounced conductance peak observed at finite bias-voltage in a carbon nanotube quantum dot in the spin singlet ground state. We explain this finite-bias conductance anomaly by a nonequilibrium Kondo-effect involving excitations into a spin triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this nonequilibrium resonance.
    • J. Paaske, A. Rosch, P. Woelfle, N. Mason, C. M. Marcus, J. Nygard
      Journal reference: Nature Physics, vol. 2, p.460 - 464 (2006) [ cond-mat/0602581v1 ]
      DOI: 10.1038/nphys340

  • 2004
    • Zero-field splitting of Kondo resonances in a carbon nanotube quantum dot - Abstract
      • We present low-temperature electron transport measurements on a single-wall carbon nanotube quantum dot exhibiting Kondo resonances at low temperature. Contrary to the usual behavior for the spin-1/2 Kondo effect we find that the temperature dependence of the zero bias conductance is nonmonotonic. In nonlinear transport measurements low-energy splittings of the Kondo resonances are observed at zero magnetic field. We suggest that these anomalies reflect interactions between the nanotube and a magnetic (catalyst) particle. The nanotube device may effectively act as a ferromagnetically contacted Kondo dot.
    • J. Nygard, W. F. Koehl, N. Mason, L. DiCarlo, C. M. Marcus
      cond-mat/0410467v2 [pdf]

  • 2001
    • Shell filling in closed single-wall carbon nanotube quantum dots - Abstract
      • We observe two-fold shell filling in the spectra of closed one-dimensional quantum dots formed in single-wall carbon nanotubes. Its signatures include a bimodal distribution of addition energies, correlations in the excitation spectra for different electron number, and alternation of the spins of the added electrons. This provides a contrast with quantum dots in higher dimensions, where such spin pairing is absent. We also see indications of an additional fourfold periodicity indicative of K-K' subband shells. Our results suggest that the absence of shell filling in most isolated nanotube dots results from disorder or nonuniformity.
    • David H. Cobden, Jesper Nygard
      DOI: 10.1103/PhysRevLett.89.046803
      cond-mat/0112331v1 [pdf]

    • Quantum dots in suspended single-wall carbon nanotubes - Abstract
      • We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as well as to study transport in suspended tubes. As an example of the utility of the technique, we study quantum dots in suspended tubes, finding that their capacitances are reduced owing to the removal of the dielectric substrate.
    • Jesper Nygard, David H. Cobden
      Journal reference: Applied Physics Letters 79 25 4216 (2001) [ cond-mat/0108020v1 ]
      DOI: 10.1063/1.1428117#

    • Transport phenomena in nanotube quantum dots from strong to weak confinement - Abstract
      • We report low-temperature transport experiments on single-wall nanotubes with metallic leads of varying contact quality, ranging from weak tunneling to almost perfect transmission. In the weak tunneling regime, where Coulomb blockade dominates, the nanotubes act as one-dimensional quantum dots. For stronger coupling to the leads the conductance can be strongly enhanced by inelastic cotunneling and the Kondo effect. For open contacts Coulomb blockade is completely suppressed, and the low-temperature conductance remains generally high, although we often see distinct dips in the conductance versus gate voltage which may result from resonant backscattering.
    • Jesper Nygard, David H. Cobden
      cond-mat/0105289v1 [pdf]

  • 2000
    • Kondo physics in carbon nanotubes - Abstract
      • The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far higher tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron number (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.
    • Jesper Nygard, David Henry Cobden, Poul Erik Lindelof
      Journal reference: Nature 408, 342-6 (2000) [ cond-mat/0011310v1 ]
      DOI: 10.1038/35042545

    • Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts - Abstract
      • The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference $\Delta$. This energy difference is compared with the activation temperature T_a extracted from the experimentally observed activated behavior of the 0.7 anomaly at low bias. We find \Delta = k_B T_a which lends support to the idea that the conductance anomaly is due to transmission through two conduction channels, of which the one with its subband edge \Delta below the chemical potential becomes thermally depopulated as the temperature is increased.
    • A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof, C. J. Marckmann, J. Nygard, C. B. Sorensen, F. Beuscher, A. Forchel, M. Michel
      Journal reference: Phys. Rev. B 62, 10950 - 10957 (2000) [ cond-mat/0005082v1 ]
      DOI: 10.1103/PhysRevB.62.10950

  • 1999
    • One-dimensional transport in bundles of single-walled carbon nanotubes - Abstract
      • We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling into a Luttinger liquid. When the conductance is greater than e^2/h at room temperature, it changes much more slowly at high temperatures, but eventually develops very large fluctuations as a function of gate voltage when sufficiently cold. We discuss the interpretation of these results in terms of transport through a Luttinger liquid.
    • David H. Cobden, Jesper Nygard, Marc Bockrath, Paul L. McEuen
      DOI: 10.1063/1.59816
      cond-mat/9904179v1 [pdf]

  • 1998
    • Activated Behavior of the 0.7 2(e^2)/h Conductance Anomaly in Quantum Point Contacts - Abstract
      • The 0.7 conductance anomaly in the quantized conductance of trench etched GaAs quantum point contacts is studied experimentally. The temperature dependence of the anomaly measured with vanishing source-drain bias reveals the same activated behavior as reported earlier for top-gated structures. Our main result is that the zero bias, high temperature 0.7 anomaly found in activation measurements and the finite bias, low temperature 0.9 anomaly found in transport spectroscopy have the same origin: a density dependent excitation gap.
    • A. Kristensen, H. Bruus, A. Forchel, J. B. Jensen, P. E. Lindelof, M. Michel, J. Nygard, C. B. Sorensen
      cond-mat/9808007v2 [pdf]

    • Temperature dependence of the “0.7” 2e2/h quasi-plateau in strongly confined quantum point contacts - Abstract
      • We present new results of the ``0.7'' 2(e^2)/h structure or quasi plateau in some of the most strongly confined point contacts so far reported. This strong confinement is obtained by a combination of shallow etching and metal gate deposition on modulation doped GaAs/GaAlAs heterostructures. The resulting subband separations are up to 20 meV, and as a consequence the quantized conductance can be followed at temperatures up to 30 K, an order of magnitude higher than in conventional split gate devices. We observe pronounced quasi plateaus at several of the lowest conductance steps all the way from their formation around 1 K to 30 K, where the entire conductance quantization is smeared out thermally. We study the deviation of the conductance from ideal integer quantization as a function of temperature, and we find an activated behavior, exp(-T_a/T), with a density dependent activation temperature T_a of the order of 2 K. We analyze our results in terms of a simple theoretical model involving scattering against plasmons in the constriction.
    • A. Kristensen, P. E. Lindelof, J. B. Jensen, M. Zaffalon, J. Hollingbery, S. W. Pedersen, J. Nygard, H. Bruus, S. M. Reimann, C. B. Sorensen M. Michel, A. Forchel
      Journal reference: Physica B 249-251, 180 (1998) [ cond-mat/9807277v1 ]
      DOI: 10.1016/S0921-4526(98)00094-5