QDev publications – University of Copenhagen

Forward this page to a friend Resize Print Bookmark and Share

Center for Quantum Devices > Research > Publications > QDev publications

Publications by all QDev staff

  • 2017
    • Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction - Abstract
      • Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson junctions, a key parameter for their use as a qubit. Anharmonicity is found to be reduced by roughly a factor of two compared to conventional metallic junctions, and dependent on gate voltage. Experimental results are consistent with a theoretical model, indicating that Josephson coupling is mediated by a small number of highly transmitting modes in the semiconductor junction.
    • A. Kringhøj, L. Casparis, M. Hell, T. W. Larsen, F. Kuemmeth, M. Leijnse, K. Flensberg, P. Krogstrup, J. Nygård, K. D. Petersson, C. M. Marcus
      1703.05643v1 [pdf]

    • Symmetry analysis of strain, electric and magnetic fields in the $\text{Bi}_2\text{Se}_3$-class of topological insulators - Abstract
      • Based on group theoretical arguments we derive the most general Hamiltonian for the $\text{Bi}_2\text{Se}_3$-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of $\text{Bi}_2\text{Se}_3$. For the most experimentally relevant surface termination we analytically derive the surface state spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to different velocities in different in-plane directions. The spin-momentum locking of strained $\text{Bi}_2\text{Se}_3$ is shown to be modified and for some strain configurations we see a non-zero spin component perpendicular to the surface. We show that for a thin film of $\text{Bi}_2\text{Se}_3$ the surface state band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the surface state band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap.
    • Mathias Rosdahl Jensen, Jens Paaske, Anders Mathias Lunde, Morten Willatzen
      1703.05259v1 [pdf]

    • Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes - Abstract
      • We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological $T$-junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.
    • Torsten Karzig, Christina Knapp, Roman Lutchyn, Parsa Bonderson, Matthew Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg, Stephan Plugge, Yuval Oreg, Charles Marcus, Michael H. Freedman
      1610.05289v3 [pdf]

    • Scalable Majorana Devices - Abstract
      • Majorana zero modes have received widespread attention due to their potential to support topologically protected quantum computing. Emerging as zero-energy states in one-dimensional semiconductors with induced superconductivity, Zeeman coupling, and spin-orbit interaction, Majorana modes have been primarily investigated in individual InSb or InAs nanowires, including recently realized epitaxial hybrid nanowires. Tests of non-Abelian statistics of Majoranas involve braiding or interferometric measurement, requiring branched geometries, which are challenging to realizing using nanowire growth. Scaling to large networks using arrays of assembled nanowire also appears difficult. Here we explore signatures of Majorana zero modes in devices made from a two-dimensional heterostructure using top-down lithography and gating. Scalable top-down fabrication readily allows complex geometries and large networks, paving the way toward applications of Majorana devices.
    • Henri J. Suominen, Morten Kjaergaard, Alexander R. Hamilton, Javad Shabani, Chris J. Palmstrøm, Charles M. Marcus, Fabrizio Nichele
      1703.03699v1 [pdf]

    • Notch filtering the nuclear environment of a spin qubit - Abstract
      • Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots, and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High frequency nuclear noise, recently studied via echo revivals, occurs in narrow frequency bands related to differences in Larmor precession of the three isotopes $\mathbf{^{69}Ga}$, $\mathbf{^{71}Ga}$, and $\mathbf{^{75}As}$. Here we show that both low and high frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time ($\mathbf{T_{2}}$) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.
    • F. K. Malinowski, F. Martins, P. D. Nissen, E. Barnes, Ł. Cywiński, M. S. Rudner, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, F. Kuemmeth
      Journal reference: Nat. Nanotechnol. 12, 16-20 (2017) [ 1601.06677v3 ]
      DOI: 10.1038/nnano.2016.170

    • Current-phase relations of few-mode InAs nanowire Josephson junctions - Abstract
      • Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, $I$, versus the phase, $\phi$, across the junction is called the current-phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. We measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunable junction, we found that the CPR varied with gate voltage: Near the onset of supercurrent, we observed behavior consistent with resonant tunneling through a single, highly transmitting mode. The gate dependence is consistent with modeled subband structure that includes an effective tunneling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.
    • Eric M. Spanton, Mingtang Deng, Saulius Vaitiekėnas, Peter Krogstrup, Jesper Nygård, Charles M. Marcus, Kathryn A. Moler
      1701.01188v1 [pdf]

    • Majorana bound state in a coupled quantum-dot hybrid-nanowire system - Abstract
      • Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.
    • M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Science 354, 1557-1562 (2016) [ 1612.07989v2 ]
      DOI: 10.1126/science.aaf3961

  • 2016
    • Majorana box qubits - Abstract
      • Quantum information protected by the topology of the storage medium is expected to exhibit long coherence times. Another feature are topologically protected gates generated through braiding of Majorana bound states. However, braiding requires structures with branched topological segments which have inherent difficulties in the semiconductor-superconductor heterostructures now believed to host Majorana bound states. In this paper, we construct quantum bits taking advantage of the topological protection and non-local properties of Majorana bound states in a network of parallel wires, but without relying on braiding for quantum gates. The elementary unit is made from three topological wires, two wires coupled by a trivial superconductor and the third acting as an interference arm. Coulomb blockade of the combined wires spawns a fractionalized spin, non-locally addressable by quantum dots used for single-qubit readout, initialization, and manipulation. We describe how the same tools allow for measurement-based implementation of the Clifford gates, in total making the architecture universal. Proof-of-principle demonstration of topologically protected qubits using existing techniques is therefore within reach.
    • Stephan Plugge, Asbjørn Rasmussen, Reinhold Egger, Karsten Flensberg
      Journal reference: New J. Phys 19, 012001 (2017) [ 1609.01697v2 ]
      DOI: 10.1088/1367-2630/aa54e1

    • Transport signatures of quasiparticle poisoning in a Majorana island - Abstract
      • We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (~ 1 {\mu}s) and sets a bound for a weakly coupled island (> 10 {\mu}s). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. In energy units, fluctuations are consistent with previous measurements.
    • S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon, K. Flensberg, C. M. Marcus
      1612.05748v1 [pdf]

    • Kondo blockade due to quantum interference in single-molecule junctions - Abstract
      • Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometer scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. We unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on the molecular structure, contacting geometry, and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm.
    • Andrew K. Mitchell, Kim G. L. Pedersen, Per Hedegaard, Jens Paaske
      1612.04852v1 [pdf]

    • Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum - Abstract
      • We demonstrate the transfer of the superconducting properties of NbTi---a large-gap high-critical-field superconductor---into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflection reveal near-unity transparency, with an induced gap $\Delta^*=0.50~\mathrm{meV}$ and a critical temperature of $7.8~\mathrm{K}$. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of $\Delta^*=0.43~\mathrm{meV}$ with substructure characteristic of both Al and NbTi.
    • A. C. C. Drachmann, H. J. Suominen, M. Kjaergaard, B. Shojaei, C. J. Palmstrøm, C. M. Marcus, F. Nichele
      Journal reference: Nano Lett. 17, 1200 (2017) [ 1611.10166v1 ]
      DOI: 10.1021/acs.nanolett.6b04964

    • Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure - Abstract
      • The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.
    • M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak, M. Wimmer, A. R. Akhmerov, J. A. Folk, K. Flensberg, J. Shabani, C. J. Palmstrom, C. M. Marcus
      Journal reference: Nat. Commun. 7, 12841 (2016) [ 1603.01852v2 ]
      DOI: 10.1038/ncomms12841

    • InAs Nanowire with Epitaxial Aluminum as a Single-Electron Transistor with Fixed Tunnel Barriers - Abstract
      • We report on fabrication of single-electron transistors using InAs nanowires with epitaxial aluminium with fixed tunnel barriers made of aluminium oxide. The devices exhibit a hard superconducting gap induced by the proximized aluminium cover shell and they behave as metallic single-electron transistors. In contrast to the typical few channel contacts in semiconducting devices, our approach forms opaque multichannel contacts to a semiconducting wire and thus provides a complementary way to study them. In addition, we confirm that unwanted extra quantum dots can appear at the surface of the nanowire. Their presence is prevented in our devices, and also by inserting a protective layer of GaAs between the InAs and Al, the latter being suitable for standard measurement methods.
    • M. Taupin, E. Mannila, P. Krogstrup, V. F. Maisi, H. Nguyen, S. M. Albrecht, J. Nygard, C. M. Marcus, J. P. Pekola
      Journal reference: Phys. Rev. Applied 6, 054017 (2016) [ 1601.01149v4 ]
      DOI: 10.1103/PhysRevApplied.6.054017

    • Giant spin-orbit splitting in inverted InAs/GaSb double quantum wells - Abstract
      • Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electron-like and hole-like states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in $e^2/h$ steps and a non-trivial Berry phase.
    • Fabrizio Nichele, Morten Kjaergaard, Henri J. Suominen, Rafal Skolasinski, Michael Wimmer, Binh-Minh Nguyen, Andrey A. Kiselev, Wei Yi, Marko Sokolich, Michael J. Manfra, Fanming Qu, Arjan J. A. Beukman, Leo P. Kouwenhoven, Charles M. Marcus
      Journal reference: Phys. Rev. Lett. 118, 016801 (2017) [ 1605.01241v2 ]
      DOI: 10.1103/PhysRevLett.118.016801

    • Localization Lifetime of a Many-Body System with Periodic Constructed Disorder - Abstract
      • We show that, in a many-body system, all particles can be strongly confined to the initially occupied sites for a time that scales as a high power of the ratio of the bandwidth of site energies to the hopping amplitude. Such time-domain formulation is complementary to the formulation of the many-body localization of all stationary states with a large localization length. The long localization lifetime is achieved by constructing a periodic sequence of site energies with a large period in a one-dimensional chain. The scaling of the localization lifetime is independent of the number of particles for a broad range of the coupling strength. The analytical results are confirmed by numerical calculations.
    • M. Schecter, M. Shapiro, M. I. Dykman
      1611.05713v1 [pdf]

    • Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions - Abstract
      • We investigate patterns of critical current as a function of perpendicular and in-plane magnetic fields in superconductor-semiconductor-superconductor (SNS) junctions based on InAs/InGaAs heterostructures with an epitaxial Al layer. This material system is of interest due to its exceptionally good superconductor-semiconductor coupling, as well as large spin-orbit interaction and g-factor in the semiconductor. Thin epitaxial Al allows the application of large in-plane field without destroying superconductivity. For fields perpendicular to the junction, flux focusing results in aperiodic node spacings in the pattern of critical currents known as Fraunhofer patterns by analogy to the related interference effect in optics. Adding an in-plane field yields two further anomalies in the pattern. First, higher order nodes are systematically strengthened, indicating current flow along the edges of the device, as a result of confinement of Andreev states driven by an induced flux dipole; second, asymmetries in the interference appear that depend on the field direction and magnitude. A model is presented, showing good agreement with experiment, elucidating the roles of flux focusing, Zeeman and spin-orbit coupling, and disorder in producing these effects.
    • H. J. Suominen, J. Danon, M. Kjaergaard, K. Flensberg, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
      Journal reference: Phys. Rev. B 95, 035307 (2017) [ 1611.00190v1 ]
      DOI: 10.1103/PhysRevB.95.035307

    • Tunable Magnetic Anisotropy from Higher-Harmonics Exchange Scattering on the Surface of a Topological Insulator - Abstract
      • We show that higher-harmonics exchange scattering from a magnetic adatom on the surface of a three dimensional topological insulator leads to a magnetic anisotropy whose magnitude and sign may be tuned by adjusting the chemical potential of the helical surface band. As chemical potential moves from the Dirac point towards the surface band edge, the surface normal is found to change from magnetic easy, to hard axis. Hexagonal warping is shown to diminish the region with easy axis anisotropy, and to suppress the anisotropy altogether. This indirect contribution can be comparable in magnitude to the intrinsic term arising from crystal field splitting and atomic spin-orbit coupling, and its tunability with chemical potential makes the two contributions experimentally discernible, and endows this source of anisotropy with potentially interesting magnetic functionality.
    • Jens Paaske, Erikas Gaidamauskas
      Journal reference: Phys. Rev. Lett. 117, 177201 (2016) [ 1602.08926v2 ]
      DOI: 10.1103/PhysRevLett.117.177201

    • Spiral magnetic order and topological superconductivity in a chain of magnetic adatoms on a two-dimensional superconductor - Abstract
      • We study the magnetic and electronic phases of a 1D magnetic adatom chain on a 2D superconductor. In particular, we confirm the existence of a `self-organized' 1D topologically non-trivial superconducting phase within the set of subgap Yu-Shiba-Rusinov (YSR) states formed along the magnetic chain. This phase is stabilized by incommensurate spiral correlations within the magnetic chain that arise from the competition between short-range ferromagnetic and long-range antiferromagnetic electron-induced exchange interactions, similar to a recent study for a 3D superconductor [M. Schecter et al. Phys. Rev. B 93, 140503(R) 2016]. The exchange interaction along diagonal directions are also considered and found to display behavior similar to a 1D substrate when close to half filling. We show that the topological phase diagram is robust against local superconducting order parameter suppression and weak substrate spin-orbit coupling. Lastly, we study the effect of a direct ferromagnetic exchange coupling between the adatoms, and find the region of spiral order in the phase diagram to be significantly enlarged in a wide range of the direct exchange coupling.
    • M. H. Christensen, M. Schecter, K. Flensberg, B. M. Andersen, J. Paaske
      Journal reference: Phys. Rev. B 94, 144509 (2016) [ 1607.08190v2 ]
      DOI: 10.1103/PhysRevB.94.144509

    • No-go theorem for a time-reversal invariant topological phase in noninteracting systems coupled to conventional superconductors - Abstract
      • We prove that a system of non-interacting electrons proximity coupled to a conventional s-wave superconductor cannot realize a time reversal invariant topological phase. This is done by showing that for such a system, in either one or two dimensions, the topological invariant of the corresponding symmetry class (DIII) is always trivial. Our results suggest that the pursuit of Majorana bound states in time-reversal invariant systems should be aimed at interacting systems or at proximity to unconventional superconductors.
    • Arbel Haim, Erez Berg, Karsten Flensberg, Yuval Oreg
      Journal reference: Phys. Rev. B 94, 161110 (2016) [ 1605.07179v2 ]
      DOI: 10.1103/PhysRevB.94.161110

    • Interaction-driven topological superconductivity in one dimension - Abstract
      • We study one-dimensional topological superconductivity in the presence of time-reversal symmetry. This phase is characterized by having a bulk gap, while supporting a Kramers' pair of zero-energy Majorana bound states at each of its ends. We present a general simple model which is driven into this topological phase in the presence of repulsive electron-electron interactions. We further propose two experimental setups and show that they realize this model at low energies. The first setup is a narrow two-dimensional topological insulator partially covered by a conventional s-wave superconductor, and the second is a semiconductor wire in proximity to an s-wave superconductor. These systems can therefore be used to realize and probe the time-reversal invariant topological superconducting phase. The effect of interactions is studied using both a mean-field approach and a renormalization group analysis.
    • Arbel Haim, Konrad Wölms, Erez Berg, Yuval Oreg, Karsten Flensberg
      Journal reference: Phys. Rev. B 94, 115124 (2016) [ 1605.09385v2 ]
      DOI: 10.1103/PhysRevB.94.115124

    • Signatures of Majorana Kramers pairs in superconductor-Luttinger liquid and superconductor-quantum dot-normal lead junctions - Abstract
      • Time-reversal invariant topological superconductors are characterized by the presence of Majorana Kramers pairs localized at defects. One of the transport signatures of Majorana Kramers pairs is the quantized differential conductance of $4e^2/h$ when such a one-dimensional superconductor is coupled to a normal-metal lead. The resonant Andreev reflection, responsible for this phenomenon, can be understood as the boundary condition change for lead electrons at low energies. In this paper, we study the stability of the Andreev reflection fixed point with respect to electron-electron interactions in the Luttinger liquid. We first calculate the phase diagram for the Luttinger liquid-Majorana Kramers pair junction and show that its low-energy properties are determined by Andreev reflection scattering processes in the spin-triplet channel, i.e. the corresponding Andreev boundary conditions are similar to that in a spin-triplet superconductor - normal lead junction. We also study here a quantum dot coupled to a normal lead and a Majorana Kramers pair and investigate the effect of local repulsive interactions leading to an interplay between Kondo and Majorana correlations. Using a combination of renormalization group analysis and slave-boson mean-field theory, we show that the system flows to a new fixed point which is controlled by the Majorana interaction rather than the Kondo coupling. This Majorana fixed point is characterized by correlations between the localized spin and the fermion parity of each spin sector of the topological superconductor. We investigate the stability of the Majorana phase with respect to Gaussian fluctuations.
    • Younghyun Kim, Dong E. Liu, Erikas Gaidamauskas, Jens Paaske, Karsten Flensberg, Roman M. Lutchyn
      Journal reference: Phys. Rev. B 94, 075439 (2016) [ 1605.02073v2 ]
      DOI: 10.1103/PhysRevB.94.075439

    • Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO$_{3}$ - Abstract
      • The two-dimensional metal forming at the interface between an oxide insulator and SrTiO3 provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO3 heterointerface based on the modulation-doped amorphous-LaAlO$_{3}$/SrTiO$_{3}$ heterostructure, which exhibits both high electron mobility exceeding 10000 cm$^{2}$/Vs and low carrier density on the order of ~10$^{12}$ cm$^{-2}$. Along with unambiguous Shubnikov-de Haas oscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional subbands. This provides new insight into the electronic structure of conducting oxide interfaces and represents an important step towards designing and understanding advanced oxide devices.
    • Felix Trier, Guenevere E. D. K. Prawiroatmodjo, Zhicheng Zhong, Merlin von Soosten, Dennis Valbjørn Christensen, Arghya Bhowmik, Juan Maria García Lastra, Yunzhong Chen, Thomas Sand Jespersen, Nini Pryds
      Journal reference: Phys. Rev. Lett. 117, 096804 (2016) [ 1603.02850v2 ]
      DOI: 10.1103/PhysRevLett.117.096804

    • Edge transport in the trivial phase of InAs/GaSb - Abstract
      • We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from the trivial to the topological regime. In the trivial regime, bulk conductivity is quenched but transport persists along the edges, superficially resembling the predicted helical edge-channels in the topological regime. We characterize edge conduction in the trivial regime in a wide variety of sample geometries and measurement configurations, as a function of temperature, magnetic field, and edge length. Despite similarities to studies claiming measurements of helical edge channels, our characterization points to a non-topological origin for these observations.
    • Fabrizio Nichele, Henri J. Suominen, Morten Kjaergaard, Charles M. Marcus, Ebrahim Sajadi, Joshua A. Folk, Fanming Qu, Arjan J. A. Beukman, Folkert K. de Vries, Jasper van Veen, Stevan Nadj-Perge, Leo P. Kouwenhoven, Binh-Minh Nguyen, Andrey A. Kiselev, Wei Yi, Marko Sokolich, Michael J. Manfra, Eric M. Spanton, Kathryn A. Moler
      Journal reference: New J. Phys. 18, 083005 (2016) [ 1511.01728v4 ]
      DOI: 10.1088/1367-2630/18/8/083005

    • Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction - Abstract
      • Measurement of multiple Andreev reflection (MAR) in a Josephson junction made from an InAs heterostructure with epitaxial aluminum is used to quantify the highly transparent semiconductor-superconductor interface, indicating near-unity transmission. The observed temperature dependence of MAR does not follow a conventional BCS form, but instead agrees with a model in which the density of states in the quantum well acquires an effective induced gap, in our case 180 {\mu}eV, close to that of the epitaxial superconductor. Carrier density dependence of MAR is investigated using a depletion gate, revealing the subband structure of the semiconductor quantum well, consistent with magnetotransport experiment of the bare InAs performed on the same wafer.
    • M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R. Akhmerov, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
      1607.04164v2 [pdf]

    • Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures - Abstract
      • We investigate the formation of a new type of composite topological excitation -- the skyrmion-vortex pair (SVP) -- in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed, and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.
    • Kjetil M. D. Hals, Michael Schecter, Mark S. Rudner
      Journal reference: Phys. Rev. Lett. 117, 017001 (2016) [ 1603.07550v2 ]
      DOI: 10.1103/PhysRevLett.117.017001

    • Supercurrent-induced spin-orbit torques - Abstract
      • We theoretically investigate the supercurrent-induced magnetization dynamics of a two-dimensional lattice of ferromagnetically ordered spins placed on a conventional superconductor with broken spatial inversion symmetry and strong spin-orbit coupling. We develop a phenomenological description of the coupled dynamics of the superconducting condensate and the spin system, and demonstrate that supercurrents produce a reactive spin-orbit torque on the magnetization. By performing a microscopic self-consistent calculation, we show that the spin-orbit torque originates from a spin-polarization of the Cooper pairs due to current-induced spin-triplet correlations. Interestingly, we find that there exists an intrinsic limitation for the maximum achievable spin-orbit torque, which is determined by the coupling strength between the condensate and the spin system. In proximitized hole-doped semiconductors, the maximum achievable spin-orbit torque field is estimated to be on the order of $0.16$ mT, which is comparable to the critical field for current-induced magnetization switching in ferromagnetic semiconductors.
    • Kjetil M. D. Hals
      Journal reference: Phys. Rev. B 93, 115431 (2016) [ 1606.08470v1 ]
      DOI: 10.1103/PhysRevB.93.115431

    • Magnetoelectric coupling in superconductor-helimagnet heterostructures - Abstract
      • The Ginzburg-Landau free energy of a conventional superconductor coupled to a helimagnet is microscopically derived using functional field integral techniques. We show that the spin texture leads to a Lifshitz invariant in the free energy, which couples the momentum density of the superconducting condensate to the magnetization of the helimagnet. For helimagnets with a conical texture, the Lifshitz invariant generates supercurrents in the condensate and yields a spatial modulation of the superconducting phase. Based on self-consistent numerical calculations, we verify the theoretical formalism by investigating a superconductor that contains a helical Yu-Shiba-Rusinov (YSR) chain. We demonstrate that the texture-induced magnetoelectric coupling produces a strong supercurrent along the YSR chain, which induces a detectable magnetic field via imaging techniques.
    • Kjetil M. D. Hals
      1606.08458v1 [pdf]

    • Roadmap to Majorana surface codes - Abstract
      • Surface codes offer a very promising avenue towards fault-tolerant quantum computation. We argue that two-dimensional interacting networks of Majorana bound states in topological superconductor/semiconductor heterostructures hold several distinct advantages in that direction, both concerning the hardware realization and the actual operation of the code. We here discuss how topologically protected logical qubits in this Majorana surface code architecture can be defined, initialized, manipulated, and read out. All physical ingredients needed to implement these operations are routinely used in topologically trivial quantum devices. In particular, we show that by means of quantum interference terms in linear conductance measurements, composite single-electron pumping protocols, and gate-tunable tunnel barriers, the full set of quantum gates required for universal quantum computation can be implemented.
    • S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg, R. Egger
      Journal reference: Phys. Rev. B 94, 174514 (2016) [ 1606.08408v1 ]
      DOI: 10.1103/PhysRevB.94.174514

    • Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot - Abstract
      • We demonstrate experimentally that non-collinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near four-fold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems is particularly interesting when combined with induced superconducting correlations as it may facilitate unconventional superconductivity and detection of Cooper pair entanglement. Our device comprises the necessary elements.
    • Morten Canth Hels, Bernd Braunecker, Kasper Grove-Rasmussen, Jesper Nygård
      Journal reference: Phys. Rev. Lett. 117, 276802 (2016) [ 1606.01065v1 ]
      DOI: 10.1103/PhysRevLett.117.276802

    • Time scales for Majorana manipulation using Coulomb blockade in gate-controlled superconducting nanowires - Abstract
      • We numerically compute the low-energy spectrum of a gate-controlled superconducting topological nanowire segmented into two islands, each Josephson-coupled to a bulk superconductor. This device may host two pairs of Majorana bound states and could provide a platform for testing Majorana fusion rules. We analyze the crossover between (i) a charge-dominated regime utilizable for initialization and readout of Majorana bound states, (ii) a single-island regime for dominating inter-island Majorana coupling, (iii) a Josephson-plasmon regime for large coupling to the bulk superconductors, and (iv) a regime of four Majorana bound states allowing for topologically protected Majorana manipulations. From the energy spectrum, we derive conservative estimates for the time scales of a fusion-rule testing protocol proposed recently [arXiv:1511.05153]. We also analyze the steps needed for basic Majorana braiding operations in branched nanowire structures.
    • Michael Hell, Jeroen Danon, Karsten Flensberg, Martin Leijnse
      Journal reference: Phys. Rev. B 94, 035424 (2016) [ 1601.07369v2 ]
      DOI: 10.1103/PhysRevB.94.035424

    • Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator - Abstract
      • We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.
    • Laura Ortiz, Rafael A. Molina, Gloria Platero, Anders Mathias Lunde
      Journal reference: Phys. Rev. B 93, 205431 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.205431

    • Survival, decay, and topological protection in non-Hermitian quantum transport - Abstract
      • Non-Hermitian quantum systems can exhibit unique observables characterizing topologically protected transport in the presence of decay. The topological protection arises from winding numbers associated with non-decaying dark states, which are decoupled from the environment and thus immune to dissipation. Here we develop a classification of topological dynamical phases for one-dimensional quantum systems with periodically-arranged absorbing sites. This is done using the framework of Bloch theory to describe the dark states and associated topological invariants. The observables, such as the average particle displacement over its life span, feature quantized contributions that are governed by the winding numbers of cycles around dark-state submanifolds in the Hamiltonian parameter space. Changes in the winding numbers at topological transitions are manifested in non-analytic behavior of the observables. We discuss the conditions under which nontrivial topological phases may be found, and provide examples that demonstrate how additional constraints or symmetries can lead to rich topological phase diagrams.
    • Mark S. Rudner, Michael Levin, Leonid S. Levitov
      1605.07652v1 [pdf]

    • Normal, superconducting and topological regimes of hybrid double quantum dots - Abstract
      • Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot devices made from InAs nanowires with a patterned epitaxial Al two-facet shell that proximitizes two gate-defined segments along the nanowire. We follow the evolution of mesoscopic superconductivity and charging energy in this system as a function of magnetic field and voltage-tuned barriers. Inter-dot coupling is varied from strong to weak using side gates, and the ground state is varied between normal, superconducting, and topological regimes by applying a magnetic field. We identify the topological transition by tracking the spacing between successive cotunneling peaks as a function of axial magnetic field and show that the individual dots host weakly hybridized Majorana modes.
    • D. Sherman, J. S. Yodh, S. M. Albrecht, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Nature Nanotechnology 12, 212 (2017) [ 1605.01865v1 ]
      DOI: 10.1038/nnano.2016.227

    • Evidence of weak superconductivity at the room-temperature grown LaAlO$_{3}$/SrTiO$_3$ interface - Abstract
      • The two-dimensional electron gas at the crystalline LaAlO$_{3}$/SrTiO$_{3}$ (c-LAO/STO) interface has sparked large interest due to its exotic properties including an intriguing gate-tunable superconducting phase. While there is growing evidence of pronounced spatial inhomogeneity in the conductivity at STO-based interfaces, the consequences for superconductivity remain largely unknown. We study interfaces based on amorphous LAO top layers grown at room temperature (a-LAO/STO) and demonstrate a superconducting phase similar to c-LAO/STO, however, with a gate-tunable critical temperature of $460 \, \mathrm{mK}$, higher than any previously reported values for c-LAO/STO. The dependence of the superconducting critical current on temperature, magnetic field and backgate-controlled doping is found to be consistently described by a model of a random array of Josephson-coupled superconducting domains.
    • Guenevere E. D. K. Prawiroatmodjo, Felix Trier, Dennis V. Christensen, Yunzhong Chen, Nini Pryds, Thomas S. Jespersen
      Journal reference: Phys. Rev. B 93, 184504 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.184504

    • Self-organized topological superconductivity in a Yu-Shiba-Rusinov chain - Abstract
      • We study a chain of magnetic moments exchange coupled to a conventional three dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable to the formation of a magnetic spiral state. Beyond weak exchange coupling the spiral wavevector greatly exceeds the inverse superconducting coherence length as a result of the strong spin-spin interaction mediated through the subgap band of Yu-Shiba-Rusinov states. Moreover, the simple spin-spin exchange description breaks down as the subgap band crosses the Fermi energy, wherein the spiral phase becomes stabilized by the spontaneous opening of a $p-$wave superconducting gap within the band. This leads to the possibility of electron-driven topological superconductivity with Majorana boundary modes using magnetic atoms on superconducting surfaces.
    • M. Schecter, K. Flensberg, M. H. Christensen, B. M. Andersen, J. Paaske
      Journal reference: Phys. Rev. B 93, 140503 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.140503

    • Yu-Shiba-Rusinov states in phase-biased superconductor–quantum dot–superconductor junctions - Abstract
      • We study the effects of a phase difference on Yu-Shiba-Rusinov (YSR) states in a spinful Coulomb-blockaded quantum dot contacted by a superconducting loop. In the limit where charging energy is larger than the superconducting gap, we determine the subgap excitation spectrum, the corresponding supercurrent, and the differential conductance as measured by a normal-metal tunnel probe. In absence of a phase difference only one linear combination of the superconductor lead electrons couples to the spin, which gives a single YSR state. With finite phase difference, however, it is effectively a two-channel scattering problem and therefore an additional state emerges from the gap edge. The energy of the phase-dependent YSR states depend on the gate voltage and one state can cross zero energy twice inside the valley with odd occupancy. These crossings are shifted by the phase difference towards the charge degeneracy points, corresponding to larger exchange couplings. Moreover, the zero-energy crossings give rise to resonant peaks in the differential conductance with magnitude $4e^2/h$. Finally, we demonstrate that the quantum fluctuations of the dot spin do not alter qualitatively any of the results.
    • Gediminas Kiršanskas, Moshe Goldstein, Karsten Flensberg, Leonid I. Glazman, Jens Paaske
      Journal reference: Phys. Rev. B 92, 235422 (2015) [pdf]
      DOI: 10.1103/PhysRevB.92.235422

    • Milestones Toward Majorana-Based Quantum Computing - Abstract
      • We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate-control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current; (2) validation of a prototype topological qubit; and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and readout schemes as well.
    • David Aasen, Michael Hell, Ryan V. Mishmash, Andrew Higginbotham, Jeroen Danon, Martin Leijnse, Thomas S. Jespersen, Joshua A. Folk, Charles M. Marcus, Karsten Flensberg, Jason Alicea
      Journal reference: Phys. Rev. X 6, 031016 (2016) [ 1511.05153v2 ]
      DOI: 10.1103/PhysRevX.6.031016

    • Filter function formalism beyond pure dephasing and non-Markovian noise in singlet-triplet qubits - Abstract
      • The filter function formalism quantitatively describes the dephasing of a qubit by a bath that causes Gaussian fluctuations in the qubit energies with an arbitrary noise power spectrum. Here, we extend this formalism to account for more general types of noise that couple to the qubit through terms that do not commute with the qubit's bare Hamiltonian. Our approach applies to any power spectrum that generates slow noise fluctuations in the qubit's evolution. We demonstrate our formalism in the case of singlet-triplet qubits subject to both quasistatic nuclear noise and $1/\omega^\alpha$ charge noise and find good agreement with recent experimental findings. This comparison shows the efficacy of our approach in describing real systems and additionally highlights the challenges with distinguishing different types of noise in free induction decay experiments.
    • Edwin Barnes, Mark S. Rudner, Frederico Martins, Filip K. Malinowski, Charles M. Marcus, Ferdinand Kuemmeth
      Journal reference: Phys. Rev. B 93, 121407 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.121407

    • Exponential protection of zero modes in Majorana islands - Abstract
      • Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers [1]. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, and the pinning is predicted to be exponential as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in proximitized nanowires and atomic chains, with small mode-splitting potentially explained by hybridization of Majoranas. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminum, which forms a proximity-induced superconducting Coulomb island (a Majorana island) that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometers, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half micrometer of increased wire length. For devices longer than about one micrometer, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
    • S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, C. M. Marcus
      Journal reference: Nature 531, 206 (2016) [pdf]
      DOI: 10.1038/nature17162

    • Charged topological entanglement entropy - Abstract
      • A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry protected topological (SPT) phases in 2+1 dimensional space-time by using this charged entanglement entropy. SPT phases are short range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is non-zero for non-trivial SPT phases and therefore it is a useful measure to detect short range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
    • Shunji Matsuura, Xueda Wen, Ling-Yan Hung, Shinsei Ryu
      Journal reference: Phys. Rev. B 93, 195113 (2016) [ 1601.03751v2 ]
      DOI: 10.1103/PhysRevB.93.195113

    • Phase-tunable Majorana bound states in a topological N-SNS junction - Abstract
      • We theoretically study the differential conductance of a one-dimensional normal-superconductor-normal-superconductor (N-SNS) junction with a phase bias applied between the two superconductors. We consider specifically a junction formed by a spin-orbit coupled semiconducting nanowire with regions of the nanowire having superconducting pairing induced by a bulk $s$-wave superconductor. When the nanowire is tuned into a topologically non-trivial phase by a Zeeman field, it hosts zero-energy Majorana modes at its ends as well as at the interface between the two superconductors. The phase-dependent splitting of the Majorana modes gives rise to features in the differential conductance that offer a clear distinction between the topologically trivial and non-trivial phases. We calculate the transport properties of the junction numerically and also present a simple analytical model that captures the main properties of the predicted tunneling spectroscopy.
    • Esben Bork Hansen, Jeroen Danon, Karsten Flensberg
      Journal reference: Phys. Rev. B 93, 094501 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.094501

    • Statistical theory of relaxation of high-energy electrons in quantum Hall edge states - Abstract
      • We investigate theoretically the energy exchange between electrons of two co-propagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel-coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states - even analytically under certain conditions. In the absence of translational invariance along the edge, e.g. due to the presence of disorder, energy can be exchanged by non-momentum conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift-velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge state heating as a result of the relaxation of the injected electrons.
    • Anders Mathias Lunde, Simon E. Nigg
      Journal reference: Phys. Rev. B 94, 045409 (2016) [ 1602.05039v1 ]
      DOI: 10.1103/PhysRevB.94.045409

    • Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions - Abstract
      • We present an analysis of the symmetries of the interference pattern of critical currents through a two-dimensional superconductor-semiconductor-superconductor junction, taking into account Rashba and Dresselhaus spin-orbit interaction, an arbitrarily oriented magnetic field, disorder, and structural asymmetries. We relate the symmetries of the pattern to the absence or presence of symmetries in the Hamiltonian, which provides a qualitative connection between easily measurable quantities and the spin-orbit coupling and other symmetries of the junction. We support our analysis with numerical calculations of the Josephson current based on a perturbative expansion up to eighth order in tunnel coupling between the normal region and the superconductors.
    • Asbjørn Rasmussen, Jeroen Danon, Henri Suominen, Fabrizio Nichele, Morten Kjaergaard, Karsten Flensberg
      Journal reference: Phys. Rev. B 93, 155406 (2016) [ 1510.05251v2 ]
      DOI: 10.1103/PhysRevB.93.155406

    • Noise Suppression Using Symmetric Exchange Gates in Spin Qubits - Abstract
      • We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.
    • Frederico Martins, Filip K. Malinowski, Peter D. Nissen, Edwin Barnes, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, Ferdinand Kuemmeth
      Journal reference: Phys. Rev. Lett. 116, 116801 (2016) [pdf]
      DOI: 10.1103/PhysRevLett.116.116801

    • Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation - Abstract
      • The thermal gradient along indium-arsenide nanowires was engineered by a combination of fabricated micro- trenches in the supporting substrate and focused laser irradiation. This allowed local control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.
    • R. Tanta, M. H. Madsen, Z. Liao, P. Krogstrup, T. Vosch, J. Nygard, T. S. Jespersen
      Journal reference: Appl. Phys. Lett. 107, 243101 (2015) [ 1601.06583v1 ]
      DOI: 10.1063/1.4937442

    • Patterning of high mobility electron gases at complex oxide interfaces - Abstract
      • Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO$_3$/SrTiO$_3$ (a-LAO/STO) and modulation-doped amorphous- LaAlO$_3$/La$_{7/8}$Sr$_{1/8}$MnO$_3$/SrTiO$_3$ (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching of amorphous-LSM (a-LSM) thin films which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ~8,700 cm$^2$/Vs at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually are ~1,000 cm$^2$/Vs at 2 K.
    • Felix Trier, Guenevere E. D. K. Prawiroatmodjo, Merlin von Soosten, Dennis Valbjørn Christensen, Thomas Sand Jespersen, Yunzhong Chen, Nini Pryds
      Journal reference: Applied Physics Letters 107, 191604 (2015) [ 1601.05571v1 ]
      DOI: 10.1063/1.4935553

    • Quantum impurities: from mobile Josephson junctions to depletons - Abstract
      • We overview the main features of mobile impurities moving in one-dimensional superfluid backgrounds by modeling it as a mobile Josephson junction, which leads naturally to the periodic dispersion of the impurity. The dissipation processes, such as radiative friction and quantum viscosity, are shown to result from the interaction of the collective phase difference with the background phonons. We develop a more realistic depleton model of an impurity-hole bound state that provides a number of exact results interpolating between the semiclassical weakly-interacting picture and the strongly interacting Tonks-Girardeau regime. We also discuss the physics of a trapped impurity, relevant to current experiments with ultra cold atoms.
    • Michael Schecter, Dimitri M. Gangardt, Alex Kamenev
      Journal reference: New J. Phys. 18 (2016) 065002 [ 1601.00628v1 ]
      DOI: 10.1088/1367-2630/18/6/065002

  • 2015
    • Gatemon Benchmarking and Two-Qubit Operations - Abstract
      • Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability characteristic for semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors below 0.7% for all gates, including voltage-controlled $Z$ rotations. We show coherent capacitive coupling between two gatemons and coherent swap operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of 91%, demonstrating the potential of gatemon qubits for building scalable quantum processors.
    • L. Casparis, T. W. Larsen, M. S. Olsen, F. Kuemmeth, P. Krogstrup, J. Nygård, K. D. Petersson, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 116, 150505 (2016) [ 1512.09195v1 ]
      DOI: 10.1103/PhysRevLett.116.150505

    • Environmental Coulomb blockade of topological superconductor-normal metal junctions - Abstract
      • We study charge transport of a topological superconductor connected to different electromagnetic environments using a low-energy description where only the Majorana bound states in the superconductor are included. Extending earlier findings who found a crossover between perfect Andreev reflection with conductance $2e^2/h$ to a regime with blocked transport when the resistance of the environment is larger than $2e^2/h$, we consider Majorana bound states coupled to metallic dots. in particular, we study two topological superconducting leads connected by a metallic quantum dot in both the weak tunneling and strong tunneling regimes. For weak tunneling, we project onto the most relevant charge states. For strong tunneling, we start from the Andreev fixed point and integrate out charge fluctuations which gives an effective low-energy model for the non-perturbative gate-voltage modulated cotunneling current. In both regimes and in contrast to cotunneling with normal leads, the conductance is temperature independent because of the resonant Andreev reflections, which are included to all orders.
    • Konrad Wölms, Karsten Flensberg
      Journal reference: Phys. Rev. B 92, 165428 (2015) [pdf]
      DOI: 10.1103/PhysRevB.92.165428

    • Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet - Abstract
      • By means of electronic transport, we study the transverse magnetic anisotropy of an individual Fe$_4$ single-molecule magnet (SMM) embedded in a three-terminal junction. In particular, we determine in situ the transverse anisotropy of the molecule from the pronounced intensity modulations of the linear conductance, which are observed as a function of applied magnetic field. The proposed technique works at temperatures exceeding the energy scale of the tunnel splittings of the SMM. We deduce that the transverse anisotropy for a single Fe$_4$ molecule captured in a junction is substantially larger than the bulk value.
    • M. Misiorny, E. Burzurí, R. Gaudenzi, K. Park, M. Leijnse, M. R. Wegewijs, J. Paaske, A. Cornia, H. S. J. van der Zant
      Journal reference: Physical Review B 91, 035442 (2015) [pdf]
      DOI: 10.1103/PhysRevB.91.035442

    • Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks - Abstract
      • Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance.
    • J. Shabani, M. Kjaergaard, H. J. Suominen, Younghyun Kim, F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans'l, S. Kraemer, C. Nayak, M. Troyer, C. M. Marcus, C. J. Palmstrøm
      Journal reference: Phys. Rev. B 93, 155402 (2016) [ 1511.01127v2 ]
      DOI: 10.1103/PhysRevB.93.155402

    • Nonlocal damping of helimagnets in one-dimensional interacting electron systems - Abstract
      • We investigate the magnetization relaxation of a one-dimensional helimagnetic system coupled to interacting itinerant electrons. The relaxation is assumed to result from the emission of plasmons, the elementary excitations of the one-dimensional interacting electron system, caused by slow changes of the magnetization profile. This dissipation mechanism leads to a highly nonlocal form of magnetization damping that is strongly dependent on the electron-electron interaction. Forward scattering processes lead to a spatially constant damping kernel, while backscattering processes produce a spatially oscillating contribution. Due to the nonlocal damping, the thermal fluctuations become spatially correlated over the entire system. We estimate the characteristic magnetization relaxation times for magnetic quantum wires and nuclear helimagnets.
    • Kjetil M. D. Hals, Karsten Flensberg, Mark S. Rudner
      Journal reference: Phys. Rev. B 92, 094403 (2015) [pdf]
      DOI: 10.1103/PhysRevB.92.094403

    • Semiclassical theory of persistent current fluctuations in ballistic chaotic rings - Abstract
      • The persistent current in a mesoscopic ring has a Gaussian distribution with small non-Gaussian corrections. Here we report a semiclassical calculation of the leading non-Gaussian correction, which is described by the three-point correlation function. The semiclassical approach is applicable to systems in which the electron dynamics is ballistic and chaotic, and includes the dependence on the Ehrenfest time. At small but finite Ehrenfest times, the non-Gaussian fluctuations are enhanced with respect to the limit of zero Ehrenfest time.
    • Piet W. Brouwer, Jeroen Danon
      DOI: 10.1016/j.physe.2015.08.004
      1507.05422v1 [pdf]

    • Local Adiabatic Mixing of Kramers Pairs of Majorana Bound States - Abstract
      • We consider Kramers pairs of Majorana bound states under adiabatic time evolution. This is important for the prospects of using such bound states as parity qubits. We show that local adiabatic perturbations can cause a rotation in the space spanned by the Kramers pair. Hence the quantum information is unprotected against local perturbations, in contrast to the case of single localized Majorana bound states in systems with broken time reversal symmetry. We give an analytical and a numerical example for such a rotation, and specify sufficient conditions under which a rotation is avoided. We give a general scheme for determining when these conditions are satisfied, and exemplify it with a general model of a quasi 1D time reversal symmetric topological superconductor.
    • Konrad Wölms, Ady Stern, Karsten Flensberg
      Journal reference: Phys. Rev. Lett. 113, 246401 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.113.246401

    • Braiding properties of Majorana Kramers pairs - Abstract
      • We consider the braiding of Kramers pairs of Majorana bound states. We derive the most general transformation on the many-body ground state that is applied as the result of such a braiding process. The result is derived in the context of a simple toy model, but we will show that it has the most general form that is compatible with local and global conservation of electron parity. In accordance with earlier work the resulting transformation turns out to be path dependent, which shows that Kramers pairs of Majorana bound states cannot be used for topological quantum computation. We also discuss under which conditions the result is path independent and corresponds to two independent exchanges of pairs of Majorana bound states.
    • Konrad Wölms, Ady Stern, Karsten Flensberg
      Journal reference: Phys. Rev. B 93, 045417 (2016) [pdf]
      DOI: 10.1103/PhysRevB.93.045417

    • Spin-orbit torques for current parallel and perpendicular to a domain wall - Abstract
      • We report field- and current-induced domain wall (DW) depinning experiments in Ta/Co20Fe60B20/MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show for the first time depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents parallel to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared to previously used measurements for just two field directions (parallel and perpendicular to the DW) and shows the sensitivity of the spin-orbit torque to the precise DW structure and pinning sites.
    • Tomek Schulz, Oscar Alejos, Eduardo Martinez, Kjetil M. D. Hals, Karin Garcia, Kyujoon Lee, Roberto Lo Conte, Gurucharan V. Karnad, Simone Moretti, Berthold Ocker, Dafiné Ravelosona, Arne Brataas, Mathias Kläui
      DOI: 10.1063/1.4931429
      1507.02435v1 [pdf]

    • Quantum transport in carbon nanotubes - Abstract
      • Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.
    • E. A. Laird, F. Kuemmeth, G. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, L. P. Kouwenhoven
      Journal reference: Rev. Mod. Phys. 87, 703 (2015) [pdf]
      DOI: 10.1103/RevModPhys.87.703

    • Spin-motive forces and current-induced torques in ferromagnets - Abstract
      • In metallic ferromagnets, the spin-transfer torque and spin-motive force are known to exhibit a reciprocal relationship. Recent experiments on ferromagnets with strong spin-orbit coupling have revealed a rich complexity in the interaction between itinerant charge carriers and magnetization, but a full understanding of this coupled dynamics is lacking. Here, we develop a general phenomenology of the two reciprocal processes of charge pumping by spin-motive forces and current-driven magnetization dynamics. The formalism is valid for spin-orbit coupling of any strength and presents a systematic scheme for deriving all possible torque and charge-pumping terms that obey the symmetry requirements imposed by the point group of the system. We demonstrate how the different charge pumping and torque contributions are connected via the Onsager reciprocal relations. The formalism is applied to two important classes of systems: isotropic ferromagnets with non-uniform magnetization and homogeneous ferromagnets described by the point group $C_{2v}$.
    • Kjetil M. D. Hals, Arne Brataas
      Journal reference: Phys. Rev. B 91, 214401 (2015) [pdf]
      DOI: 10.1103/PhysRevB.91.214401

    • Interaction effects on proximity-induced superconductivity in semiconducting nanowires - Abstract
      • We investigate the effect of electron-electron interactions on proximity-induced $s$-wave superconductivity in one-dimensional nanowires. We treat the interactions on a self-consistent mean-field level, and find an analytic expression for the effective pairing potential in the presence of interactions, valid for a weakly tunnel coupled wire. We show that for a set of two nanowires placed in parallel on a superconducting substrate, the interaction-induced reduction of the pairing energy could result in the effective interwire pairing potential exceeding the intrawire potential, which is one of the requirements for creating a time-reversal symmetric topological superconducting state in such a two-wire system.
    • Jeroen Danon, Karsten Flensberg
      Journal reference: Phys. Rev. B 91, 165425 (2015) [pdf]
      DOI: 10.1103/PhysRevB.91.165425

    • Semiconductor-Nanowire-Based Superconducting Qubit - Abstract
      • We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
    • T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 115, 127001 (2015) [pdf]
      DOI: 10.1103/PhysRevLett.115.127001

    • Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect - Abstract
      • We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional (1d) conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida (RKKY) effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signalling the breakdown of the perturbative RKKY picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.
    • Michael Schecter, Mark S. Rudner, Karsten Flensberg
      Journal reference: Phys. Rev. Lett. 114, 247205 (2015) [pdf]
      DOI: 10.1103/PhysRevLett.114.247205

    • Hard gap in epitaxial semiconductor–superconductor nanowires - Abstract
      • Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
    • W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J. Nygård, C. M. Marcus
      Journal reference: Nature Nanotechnology 10, 232 (2015) [pdf]
      DOI: 10.1038/nnano.2014.306

    • Parity lifetime of bound states in a proximitized semiconductor nanowire - Abstract
      • Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
    • A. P. Higginbotham, S. M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygard, K. Flensberg, C. M. Marcus
      Journal reference: Nature Physics 11, 1017 (2015) [pdf]
      DOI: 10.1038/nphys3461

  • 2014
    • Tunnel spectroscopy of Majorana bound states in topological superconductor/quantum dot Josephson junctions - Abstract
      • We theoretically investigate electronic transport through a junction where a quantum dot (QD) is tunnel coupled on both sides to semiconductor nanowires with strong spin-orbit interaction and proximity-induced superconductivity. The results are presented as stability diagrams, i.e., the differential conductance as a function of the bias voltage applied across the junction and the gate voltage used to control the electrostatic potential on the QD. A small applied magnetic field splits and modifies the resonances due to the Zeeman splitting of the QD level. Above a critical field strength, Majorana bound states (MBS) appear at the interfaces between the two superconducting nanowires and the QD, resulting in a qualitative change of the entire stability diagram, suggesting this setup as a promising platform to identify MBS. Our calculations are based on a nonequilibrium Green's function description and is exact when Coulomb interactions on the QD can be neglected. In addition, we develop a simple pictorial view of the involved transport processes, which is equivalent to a description in terms of multiple Andreev reflections, but provides an alternative way to understand the role of the QD level in enhancing transport for certain gate and bias voltages. We believe that this description will be useful in future studies of interacting QDs coupled to superconducting leads (with or without MBS), where it can be used to develop a perturbation expansion in the tunnel coupling.
    • Guang-Yao Huang, Martin Leijnse, Karsten Flensberg, Hongqi Xu
      Journal reference: Phys. Rev. B 90, 214507 (2014) [pdf]
      DOI: 10.1103/PhysRevB.90.214507

    • Gilbert Damping in Noncollinear Ferromagnets - Abstract
      • The precession and damping of a collinear magnetization displaced from its equilibrium are described by the Landau-Lifshitz-Gilbert equation. For a noncollinear magnetization, it is not known how the damping should be described. We use first-principles scattering theory to investigate the damping in one-dimensional transverse domain walls (DWs) of the important ferromagnetic alloy Ni$_{80}$Fe$_{20}$ and interpret the results in terms of phenomenological models. The damping is found to depend not only on the magnetization texture but also on the specific dynamic modes of Bloch and N\'eel DWs. Even in the highly disordered Ni$_{80}$Fe$_{20}$ alloy, the damping is found to be remarkably nonlocal.
    • Zhe Yuan, Kjetil M. D. Hals, Yi Liu, Anton A. Starikov, Arne Brataas, Paul J. Kelly
      Journal reference: Physical Review Letters 113, 266603 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.113.266603

    • Epitaxy of semiconductor–superconductor nanowires - Abstract
      • Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
    • P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, T. S. Jespersen
      Journal reference: Nature Materials 14, 400 (2015) [pdf]
      DOI: 10.1038/nmat4176

    • Magnonic Charge Pumping via Spin-Orbit Coupling - Abstract
      • The interplay between spin, charge, and orbital degrees of freedom has led to the development of spintronic devices like spin-torque oscillators, spin-logic devices, and spin-transfer torque magnetic random-access memories. In this development spin pumping, the process where pure spin-currents are generated from magnetisation precession, has proved to be a powerful method for probing spin physics and magnetisation dynamics. The effect originates from direct conversion of low energy quantised spin-waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent normal metal leads. The spin-pumping phenomenon represents a convenient way to electrically detect magnetisation dynamics, however, precessing magnets have been limited so far to pump pure spin currents, which require a secondary spin-charge conversion element such as heavy metals with large spin Hall angle or multi-layer layouts to be detectable. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin-orbit interaction. The generated electric current, differently from spin currents generated by spin-pumping, can be directly detected without the need of any additional spin to charge conversion mechanism and amplitude and phase information about the relativistic current-driven magnetisation dynamics. The charge-pumping phenomenon is generic and gives a deeper understanding of the recently observed spin-orbit torques, of which it is the reciprocal effect and which currently attract interest for their potential in manipulating magnetic information. Furthermore, charge pumping provides a novel link between magnetism and electricity and may find application in sourcing alternating electric currents.
    • Chiara Ciccarelli, Kjetil M. D. Hals, Andrew Irvine, Vit Novak, Yaroslav Tserkovnyak, Hidekazu Kurebayashi, Arne Brataas, Andrew Ferguson
      DOI: 10.1038/nnano.2014.252
      1411.2779v1 [pdf]

    • Designing $π$-stacked molecular structures to control heat transport through molecular junctions - Abstract
      • We propose and analyze a new way of using $\pi$ stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce, or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.
    • Gediminas Kiršanskas, Qian Li, Karsten Flensberg, Gemma C. Solomon, Martin Leijnse
      Journal reference: Appl. Phys. Lett. 105, 233102 (2014) [pdf]
      DOI: 10.1063/1.4903340

    • Quantum interference in off-resonant transport through single molecules - Abstract
      • We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance within a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same, or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diag- onalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions, interference causes no transmission nodes, but argue that it may lead to a non-standard gate-dependence of the zero-bias Kondo resonance.
    • Kim G. L. Pedersen, Mikkel Strange, Martin Leijnse, Per Hedegård, Gemma Solomon, Jens Paaske
      Journal reference: Phys. Rev. B 90, 125413 (2014) [pdf]
      DOI: 10.1103/PhysRevB.90.125413

    • Multilevel Interference Resonances in Strongly Driven Three-Level Systems - Abstract
      • We study multi-photon resonances in a strongly-driven three-level quantum system, where one level is periodically swept through a pair of levels with constant energy separation $E$. Near the multi-photon resonance condition $n\hbar\omega = E$, where $n$ is an integer, we find qualitatively different behavior for $n$ even or odd. We explain this phenomenon in terms of families of interfering trajectories of the multi-level system. Remarkably, the behavior is insensitive to fluctuations of the energy of the driven level, and survives deep into the strong dephasing regime. The setup can be relevant for a variety of solid state and atomic or molecular systems. In particular, it provides a clear mechanism to explain recent puzzling experimental observations in strongly-driven double quantum dots.
    • Jeroen Danon, Mark S. Rudner
      Journal reference: Phys. Rev. Lett. 113, 247002 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.113.247002

    • Hole Spin Coherence in a Ge/Si Heterostructure Nanowire - Abstract
      • Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time $T_2^* \sim 0.18~\mathrm{\mu s}$ exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.
    • A. P. Higginbotham, T. W. Larsen, J. Yao, H. Yan, C. M. Lieber, C. M. Marcus, F. Kuemmeth
      Journal reference: Nano Letters 14, 3582 (2014) [pdf]
      DOI: 10.1021/nl501242b

    • Spin-wave-induced correction to the conductivity of ferromagnets - Abstract
      • We calculate the correction to the conductivity of a disordered ferromagnetic metal due to spin-wave-mediated electron--electron interactions. This correction is the generalization of the Altshuler-Aronov correction to spin-wave-mediated interactions. We derive a general expression for the conductivity correction to lowest order in the spin-wave-mediated interaction and for the limit that the exchange splitting $\Delta$ is much smaller than the Fermi energy. For a "clean" ferromagnet with $\Delta\tau_{\rm el}/\hbar \gg 1$, with $\tau_{\rm el}$ the mean time for impurity scattering, we find a correction $\delta \sigma \propto -T^{5/2}$ at temperatures $T$ above the spin wave gap. In the opposite, "dirty" limit, $\Delta\tau_{\rm el}/\hbar \ll 1$, the correction is a non-monotonous function of temperature.
    • Jeroen Danon, Alessandro Ricottone, Piet W. Brouwer
      Journal reference: Phys. Rev. B 90, 024405 (2014) [pdf]
      DOI: 10.1103/PhysRevB.90.024405

    • Majorana Bound States in Two-Channel Time-Reversal-Symmetric Nanowire Systems - Abstract
      • We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to an s-wave superconductor. We analyze the requirements for a nontrivial topological phase and find that necessary conditions are 1) the determinant of the pairing matrix in channel space must be negative, 2) inversion symmetry must be broken, and 3) the two channels must have different spin-orbit couplings. The first condition can be implemented in semiconducting nanowire systems where interactions suppress intra-channel pairing, while the inversion symmetry can be broken by tuning the chemical potentials of the channels. For the case of collinear spin-orbit directions, we find a general expression for the topological invariant by block diagonalization into two blocks with chiral symmetry only. By projection to the low-energy sector, we solve for the zero modes explicitly and study the details of the gap closing, which in the general case happens at finite momenta.
    • Erikas Gaidamauskas, Jens Paaske, Karsten Flensberg
      Journal reference: Phys. Rev. Lett. 122, 126402 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.112.126402

    • Antilocalization of Coulomb Blockade in a Ge/Si Nanowire - Abstract
      • The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribution has its maximum away from zero at zero magnetic field, with an average that decreases with increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length ($l_{so}$ < 20 nm), consistent with values extracted in the Coulomb blockade regime ($l_{so}$ < 25 nm).
    • A. P. Higginbotham, F. Kuemmeth, T. W. Larsen, M. Fitzpatrick, J. Yao, H. Yan, C. M. Lieber, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 112, 216806 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.112.216806

    • Dynamics of spin-flip photon-assisted tunneling - Abstract
      • We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under the present conditions. We are able to extract the resulting effective `spin-flip tunneling' energy, which is found to be three orders of magnitude smaller than the regular spin-conserving tunneling energy. We also measure the relaxation and dephasing times of a qubit formed out of two two-electron states with different spin and charge configurations.
    • F. R. Braakman, J. Danon, L. R. Schreiber, W. Wegscheider, L. M. K. Vandersypen
      Journal reference: Phys. Rev. B 89, 075417 (2014) [ 1401.0881v1 ]
      DOI: 10.1103/PhysRevB.89.075417

  • 2013
    • Spin-wave-induced corrections to the electronic density of states in metallic ferromagnets - Abstract
      • We calculate the correction to the electronic density of states in a disordered ferromagnetic metal induced by spin-wave mediated interaction between the electrons. Our calculation is valid for the case that the exchange splitting in the ferromagnet is much smaller than the Fermi energy, but we make no assumption on the relative magnitude of the exchange splitting and the elastic electronic scattering time. In the "clean limit", where the exchange splitting is much larger than the electronic scattering rate, we find a correction with a T^{d/2} temperature dependence, where d is the effective dimensionality of the ferromagnet. In the opposite "dirty limit" the density-of-states correction is a non-monotonous function of energy and temperature.
    • Alessandro Ricottone, Jeroen Danon, Piet W. Brouwer
      DOI: 10.1088/1367-2630/15/12/123036
      1310.3511v1 [pdf]

    • Epitaxial aluminum contacts to InAs nanowires - Abstract
      • We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at low temperature. Half-covering aluminum contacts are realized without the need of lithography and we demonstrate how to controllably insert high-band gap layers in the interface region. These developments are relevant to hybrid superconductor-nanowire devices that support Majorana zero energy states.
    • N. L. B. Ziino, P. Krogstrup, M. H. Madsen, E. Johnson, J. B. Wagner, C. M. Marcus, J. Nygård, T. S. Jespersen
      1309.4569v1 [pdf]

    • The theory of coherent dynamic nuclear polarization in quantum dots - Abstract
      • We consider the dynamic nuclear spin polarization (DNP) using two electrons in a double quantum dot in presence of external magnetic field and spin-orbit interaction, in various schemes of periodically repeated sweeps through the S-T+ avoided crossing. By treating the problem semi-classically, we find that generally the DNP have two distinct contributions - a geometrical polarization and a dynamic polarization, which have different dependence on the control parameters such as the sweep rates and waiting times in each period. Both terms show non-trivial dependence on those control parameter. We find that even for small spin-orbit term, the dynamical polarization dominates the DNP in presence of a long waiting period near the S-T+ avoided crossing, of the order of the nuclear Larmor precession periods. A detailed numerical analysis of a specific control regime can explain the oscillations observed by Foletti et.~al.~in arXiv:0801.3613.
    • Izhar Neder, Mark S. Rudner, Bertrand I. Halperin
      DOI: 10.1103/PhysRevB.89.085403
      1309.3027v1 [pdf]

    • Hyperfine interactions in two-dimensional HgTe topological insulators - Abstract
      • We study the hyperfine interaction between the nuclear spins and the electrons in a HgTe quantum well, which is the prime experimentally realized example of a two-dimensional topological insulator. The hyperfine interaction is a naturally present, internal source of broken time-reversal symmetry from the point of view of the electrons. The HgTe quantum well is described by the so-called Bernevig-Hughes-Zhang (BHZ) model. The basis states of the BHZ model are combinations of both S- and P-like symmetry states, which means that three kinds of hyperfine interactions play a role: (i) The Fermi contact interaction, (ii) the dipole-dipole like coupling and (iii) the electron orbital to nuclear-spin coupling. We provide benchmark results for the forms and magnitudes of these hyperfine interactions within the BHZ model, which give a good starting point for evaluating hyperfine interactions in any HgTe nanostructure. We apply our results to the helical edge states of a HgTe two-dimensional topological insulator and show how their total hyperfine interaction becomes anisotropic and dependent on the orientation of the sample edge within the plane. Moreover, for the helical edge states the hyperfine interactions due to the P-like states can dominate over the S-like contribution in certain circumstances.
    • Anders Mathias Lunde, Gloria Platero
      Journal reference: Phys. Rev. B 88, 115411 (2013) [pdf]
      DOI: 10.1103/PhysRevB.88.115411

    • Coupling Spin Qubits via Superconductors - Abstract
      • We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length.
    • Martin Leijnse, Karsten Flensberg
      Journal reference: Phys. Rev. Lett. 111, 060501 (2013) [pdf]
      DOI: 10.1103/PhysRevLett.111.060501

    • Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires - Abstract
      • Straight, axial InAs nanowire with multiple segments of GaInAs were grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveal the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the GaInAs/InAs interfaces and a higher Ga concentration for the early grown GaInAs segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.
    • Sriram Venkatesan, Morten H. Madsen, Herbert Schmid, Peter Krogstrup, Erik Johnson, Christina Scheu
      Journal reference: Appl. Phys. Lett. 103, 063106 (2013) [pdf]
      DOI: 10.1063/1.4818338

    • Temperature-dependent dynamical nuclear polarization bistabilities in double quantum dots in the spin-blockade regime - Abstract
      • The interplay of dynamical nuclear polarization (DNP) and leakage current through a double quantum dot in the spin-blockade regime is analyzed. A finite DNP is built up due to a competition between hyperfine (HF) spin-flip transitions and another inelastic escape mechanism from the triplets, which block transport. We focus on the temperature dependence of the DNP for zero energy-detuning (i.e. equal electrostatic energy of one electron in each dot and a singlet in the right dot). Our main result is the existence of a transition temperature, below which the DNP is bistable, so a hysteretic leakage current versus external magnetic field B appears. This is studied in two cases: (i) Close to the crossing of the three triplet energy levels near B=0, where spin-blockade is lifted due to the inhomogeneity of the effective magnetic field from the nuclei. (ii) At higher B-fields, where the two spin-polarized triplets simultaneously cross two different singlet energy levels. We develop simplified models leading to different transition temperatures T_TT and T_ST for the crossing of the triplet levels and the singlet-triplet level crossings, respectively. We find T_TT analytically to be given solely by the HF couplings, whereas T_ST depends on various parameters and T_ST>T_TT. The key idea behind the existence of the transition temperatures at zero energy-detuning is the suppression of energy absorption compared to emission in the inelastic HF transitions. Finally, by comparing the rate equation results with Monte Carlo simulations, we discuss the importance of having both HF interaction and another escape mechanism from the triplets to induce a finite DNP.
    • Anders Mathias Lunde, Carlos López-Monís, Ioanna A. Vasiliadou, Luis L. Bonilla, Gloria Platero
      Journal reference: Phys. Rev. B 88, 035317 (2013) [pdf]
      DOI: 10.1103/PhysRevB.88.035317

    • Advances in the theory of III–V nanowire growth dynamics - Abstract
      • Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.
    • Peter Krogstrup, Henrik I. Jørgensen, Erik Johnson, Morten Hannibal Madsen, Claus B. Sørensen, Anna Fontcuberta i Morral, Martin Aagesen, Jesper Nygård, Frank Glas
      Journal reference: J. Phys. D: Appl. Phys. 46 (2013) 313001 [pdf]
      DOI: 10.1088/0022-3727/46/31/313001

    • Coherent Operations and Screening in Multielectron Spin Qubits - Abstract
      • The performance of multi-electron spin qubits is examined by comparing exchange oscillations in coupled single-electron and multi-electron quantum dots in the same device. Fast (> 1 GHz) exchange oscillations with a quality factor Q > 15 are found for the multi-electron case, compared to Q ~ 2 for the single-electron case, the latter consistent with previous experiments. A model of dephasing that includes voltage and hyperfine noise is developed that is in good agreement with both single- and multi-electron data, though in both cases additional exchange-independent dephasing is needed to obtain quantitative agreement across a broad parameter range.
    • A. P. Higginbotham, F. Kuemmeth, M. P. Hanson, A. C. Gossard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 112, 026801 (2014) [pdf]
      DOI: 10.1103/PhysRevLett.112.026801

    • In vivo magnetic resonance imaging of hyperpolarized silicon particles - Abstract
      • Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.
    • M. C. Cassidy, H. R. Chan, B. D. Ross, P. K. Bhattacharya, C. M. Marcus
      Journal reference: Nature Nanotechnology 8, 363 (2013) [pdf]
      DOI: 10.1038/nnano.2013.65

    • Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging - Abstract
      • We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP.
    • Tonya M. Atkins, Maja C. Cassidy, Menyoung Lee, Shreyashi Ganguly, Charles M. Marcus, Susan M. Kauzlarich
      Journal reference: ACS Nano 7, 1609 (2013) [pdf]
      DOI: 10.1021/nn305462y

    • Quantum-Dot-Based Resonant Exchange Qubit - Abstract
      • We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment.
    • J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 111, 050501 (2013) [pdf]
      DOI: 10.1103/PhysRevLett.111.050501

    • Interaction effects in electric transport through self-assembled molecular monolayers - Abstract
      • We theoretically investigate the effect of inter-molecular Coulomb interactions on transport through molecular monolayers (or other devices based on a large number of nanoscale conductors connected in parallel). Due to the interactions, the current through different molecules become correlated, resulting in distinct features in the non-linear current-voltage characteristics, as we show by deriving and solving a type of modified master equation, suitable for describing transport through an infinite number of interacting conductors. Furthermore, if some of the molecules fail to bond to both electrodes, charge traps can be induced at high voltages and block transport through neighboring molecules, resulting in negative differential resistance.
    • Martin Leijnse
      Journal reference: Phys. Rev. B 87, 125417 (2013) [pdf]
      DOI: 10.1103/PhysRevB.87.125417

    • Pauli spin blockade and the ultrasmall magnetic field effect - Abstract
      • Based on the spin-blockade model for organic magnetoresistance we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the sites. We reveal the physics producing qualitatively different magnetoconductance line shapes as well as the ultrasmall magnetic field effect, and we study the role of the ratio between the intersite hopping rate and the typical magnitude of the nuclear fields. Our findings are in agreement with recent experiments and numerical simulations.
    • Jeroen Danon, Xuhui Wang, Aurélien Manchon
      DOI: 10.1103/PhysRevLett.111.066802
      1303.5852v1 [pdf]

    • Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover - Abstract
      • We present transport measurements in superconductor-nanowire devices with a gated constriction forming a quantum point contact. Zero-bias features in tunneling spectroscopy appear at finite magnetic fields, and oscillate in amplitude and split away from zero bias as a function of magnetic field and gate voltage. A crossover in magnetoconductance is observed: Magnetic fields above ~ 0.5 T enhance conductance in the low-conductance (tunneling) regime but suppress conductance in the high-conductance (multichannel) regime. We consider these results in the context of Majorana zero modes as well as alternatives, including Kondo effect and analogs of 0.7 structure in a disordered nanowire.
    • H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, C. M. Marcus
      Journal reference: Phys. Rev. B 87, 241401(R) (2013) [pdf]
      DOI: 10.1103/PhysRevB.87.241401

    • Spin-flip phonon-mediated charge relaxation in double quantum dots - Abstract
      • We theoretically study the $(1,1)$ triplet to $(0,2)$ singlet relaxation rate in a lateral gate-defined double quantum dot tuned to the regime of Pauli spin blockade. We present a detailed derivation of the effective phonon density of states for this specific charge transition, keeping track of the contribution from piezoelectric as well as deformation potential electron-phonon coupling. We further investigate two different spin-mixing mechanisms which can couple the triplet and singlet states: a magnetic field gradient over the double dot (relevant at low external magnetic field) and spin-orbit interaction (relevant at high field), and we also indicate how the two processes could interfere at intermediate magnetic field. Finally, we show how to combine all results and evaluate the relaxation rate for realistic system parameters.
    • J. Danon
      DOI: 10.1103/PhysRevB.88.075306
      1302.7169v1 [pdf]

    • Self-consistent measurement and state tomography of an exchange-only spin qubit - Abstract
      • We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.
    • J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, C. M. Marcus
      Journal reference: Nature Nanotechnology 8, 654 (2013) [pdf]
      DOI: 10.1038/nnano.2013.168

    • Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube - Abstract
      • Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their spin and isospin quantum numbers. These states fall into two multiplets according to their exchange symmetries. The formation of a strongly-interacting Wigner molecule is evident from the small energy splitting measured between the two multiplets, that is quenched by an order of magnitude compared to the non-interacting value. Our ability to tune the two-electron state in space and to study it for both electrons and holes provides an unambiguous demonstration of the fundamental Wigner molecule state.
    • S. Pecker, F. Kuemmeth, A. Secchi, M. Rontani, D. C. Ralph, P. L. McEuen, S. Ilani
      Journal reference: Nature Physics 9, 576-581 (2013) [pdf]
      DOI: 10.1038/nphys2692

    • Single-nanowire solar cells beyond the Shockley–Queisser limit - Abstract
      • Light management is of great importance to photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal pn-junction combined with an optimal light absorption can lead to a solar cell efficiency above the Shockley-Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate. At one sun illumination a short circuit current of 180 mA/cm^2 is obtained, which is more than one order of magnitude higher than what would be predicted from Lambert-Beer law. The enhanced light absorption is shown to be due to a light concentrating property of the standing nanowire as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III-V based nanowire solar cells under one sun illumination.
    • Peter Krogstrup, Henrik Ingerslev Jørgensen, Martin Heiss, Olivier Demichel, Jeppe V. Holm, Martin Aagesen, Jesper Nygard, Anna Fontcuberta i Morral
      Journal reference: Nature Photonics 7, 306-310 (2013) [pdf]
      DOI: 10.1038/nphoton.2013.32

  • 2012
    • Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction - Abstract
      • The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupancy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
    • W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, C. M. Marcus
      Journal reference: Phys. Rev. Lett. 110, 217005 (2013) [pdf]
      DOI: 10.1103/PhysRevLett.110.217005

    • Introduction to topological superconductivity and Majorana fermions - Abstract
      • This short review article provides a pedagogical introduction to the rapidly growing research field of Majorana fermions in topological superconductors. We first discuss in some details the simplest "toy model" in which Majoranas appear, namely a one-dimensional tight-binding representation of a p-wave superconductor, introduced more than ten years ago by Kitaev. We then give a general introduction to the remarkable properties of Majorana fermions in condensed matter systems, such as their intrinsically non-local nature and exotic exchange statistics, and explain why these quasiparticles are suspected to be especially well suited for low-decoherence quantum information processing. We also discuss the experimentally promising (and perhaps already successfully realized) possibility of creating topological superconductors using semiconductors with strong spin-orbit coupling, proximity-coupled to standard s-wave superconductors and exposed to a magnetic field. The goal is to provide an introduction to the subject for experimentalists or theorists who are new to the field, focusing on the aspects which are most important for understanding the basic physics. The text should be accessible for readers with a basic understanding of quantum mechanics and second quantization, and does not require knowledge of quantum field theory or topological states of matter.
    • Martin Leijnse, Karsten Flensberg
      Journal reference: Semicond. Sci. Technol. 27, 124003 (2012) [pdf]
      DOI: 10.1088/0268-1242/27/12/124003

    • Parity qubits and poor man's Majorana bound states in double quantum dots - Abstract
      • We study a double quantum dot connected via a common superconducting lead and show that this system can be tuned to host one Majorana bound state (MBS) on each dot. We call them "poor man's Majorana bound states" since they are not topologically protected, but otherwise share the properties of MBS formed in topological superconductors. We describe the conditions for the existence of the two spatially separated MBS, which include breaking of spin degeneracy in the two dots, with the spins polarized in different directions. Therefore, we propose to use a magnetic field configuration where the field directions on the two dot form an angle. By control of this angle the cross Andreev reflection and the tunnel amplitudes can be tuned to be approximately equal, which is a requirement for the formation of the MBS. We show that the fermionic state encoded in the two Majoranas constitutes a parity qubit, which is non-local and can only be measured by probing both dots simultaneously. Using a many-particle basis for the MBS, we discuss the role of interactions and show that inter-dot interactions always lift the degeneracy. We also show how the MBS can be probed by transport measurements and discuss how the combination of several such double dot systems allows for entanglement of parity qubits and measurement of their dephasing times.
    • Martin Leijnse, Karsten Flensberg
      Journal reference: Phys. Rev. B. 86, 134528 (2012) [pdf]
      DOI: 10.1103/PhysRevB.86.134528

    • g-Tensor Control in Bent Carbon Nanotube Quantum Dots - Abstract
      • We demonstrate gate control of the electronic g-tensor in single and double quantum dots formed along a bend in a carbon nanotube. From the dependence of the single-dot excitation spectrum on magnetic field magnitude and direction, we extract spin-orbit coupling, valley coupling, spin and orbital magnetic moments. Gate control of the g-tensor is measured using the splitting of the Kondo peak in conductance as a sensitive probe of Zeeman energy. In the double quantum dot regime, the magnetic field dependence of the position of cotunneling lines in the two dimensional charge stability diagram is used to infer the positions of the two dots along the nanotube.
    • R. A. Lai, H. O. H. Churchill, C. M. Marcus
      Journal reference: Physical Review B 89, 121303(R) 2014 [pdf]
      DOI: 10.1103/PhysRevB.89.121303

    • Finite-bias conductance anomalies at a singlet-triplet crossing - Abstract
      • Quantum dots and single-molecule transistors may exhibit level crossings induced by tuning external parameters such as magnetic field or gate voltage. For Coulomb blockaded devices, this shows up as an inelastic cotunneling threshold in the differential conductance, which can be tuned to zero at the crossing. Here we show that, in addition, level crossings can give rise to a nearly vertical step-edge, ridge or even a Fano-like ridge-valley feature in the differential conductance inside the relevant Coulomb diamond. We study a gate-tunable quasidegeneracy between singlet and triplet ground states, and demonstrate how these different shapes may result from a competition between nonequilibrium occupations and weak (spin-orbit) mixing of the states. Our results are shown to be in qualitative agreement with recent transport measurements on a Mn complex [E. A. Osorio, et al., Nano Lett. 10, 105 (2010)]. The effect remains entirely general and should be observable in a wide range of Coulomb blockaded devices.
    • Chiara Stevanato, Martin Leijnse, Karsten Flensberg, Jens Paaske
      Journal reference: Phys. Rev. B 86, 165427 (2012) [pdf]
      DOI: 10.1103/PhysRevB.86.165427

    • Doping incorporation paths in catalyst-free Be-doped GaAs nanowires - Abstract
      • The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy has been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also demonstrate that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.
    • Alberto Casadei, Peter Krogstrup, Martin Heiss, Jason A. Röhr, Carlo Colombo, Thibaud Ruelle, Shivendra Upadhyay, Claus B. Sørensen, Jesper Nygård, Anna Fontcuberta i Morral
      Journal reference: Appl. Phys. Lett. 102, 013117 (2013) [pdf]
      DOI: 10.1063/1.4772020

    • Hybrid topological-spin qubit systems for two-qubit-spin gates - Abstract
      • We investigate a hybrid quantum system involving spin qubits, based on the spins of electrons confined in quantum dots, and topological qubits, based on Majorana fermions. In such a system, gated control of the charge on the quantum dots allows transfer of quantum information between the spin and topological qubits, and the topological system can be used to facilitate transfer of spin qubits between spatially separated quantum dots and to initialize entangled spin-qubit pairs. Here, we show that the coupling to the topological system also makes it possible to perform entangling two-qubit gates on spatially separated spin qubits. The two-qubit gates are based on a combination of topologically protected braiding operations, gate-controlled charge transfer between the dots and edge Majorana modes, and measurements of the state of the topological qubits.
    • Martin Leijnse, Karsten Flensberg
      Journal reference: Phys. Rev. B 86, 104511 (2012) [pdf]
      DOI: 10.1103/PhysRevB.86.104511

    • Parallel carbon nanotube quantum dots and their interactions - Abstract
      • We present quantum transport measurements of interacting parallel quantum dots formed in the strands of a carbon nanotube rope. In this molecular quantum dot system, transport is dominated by one quantum dot, while additional resonances from parallel side dots appear, which exhibit a weak gate coupling. This differential gating effect provides a tunability of the quantum dot system with only one gate electrode and provides control over the carbon nanotube strand that carries the current. By tuning the system to different states we use quantum transport as a spectroscopic tool to investigate the inter-dot coupling and show a route to distinguish between various side dots. By comparing the experimental data with master equation calculations, we identify conditions for the tunneling rates that are required in order to observe different manifestations of the inter-dot coupling in the transport spectra.
    • Karin Goß, Martin Leijnse, Sebastian Smerat, Maarten R. Wegewijs, Claus M. Schneider, Carola Meyer
      DOI: 10.1103/PhysRevB.87.035424
      1208.5860v1 [pdf]

    • Radical-free dynamic nuclear polarization using electronic defects in silicon - Abstract
      • Direct dynamic nuclear polarization of 1H nuclei in frozen water and water-ethanol mixtures is demonstrated using silicon nanoparticles as the polarizing agent. Electron spins at dangling-bond sites near the silicon surface are identified as the source of the nuclear hyperpolarization. This novel polarization method open new avenues for the fabrication of surface engineered nanostructures to create high nuclear-spin polarized solutions without introducing contaminating radicals, and for the study of molecules adsorbed onto surfaces.
    • M. C. Cassidy, C. Ramanathan, D. G. Cory, J. W. Ager, C. M. Marcus
      Journal reference: Phys. Rev. B 87, 161306(R) (2013) [pdf]
      DOI: 10.1103/PhysRevB.87.161306

    • Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field - Abstract
      • We study the low-energy bandstructure of armchair and small-bandgap semiconducting carbon nanotubes with proximity-induced superconducting pairing when a spiral magnetic field creates strong effective spin-orbit interactions from the Zeeman term and a periodic potential from the orbital part. We find that gapless Dirac fermions can be generated by variation of a single parameter. For a semiconducting tube with the field in the same plane, a non-degenerate zero mode at momentum k=0 can be induced, allowing for the generation of topologically protected Majorana fermion end states.
    • Reinhold Egger, Karsten Flensberg
      Journal reference: Physical Review B 85, 235462 (2012) [pdf]
      DOI: 10.1103/PhysRevB.85.235462